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Outline
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● A Graphene Field Effect Transistor device
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2004: the 2D revolution

● Theoretically known for more then 
60 years, used as (2+1)D QED toy 
model 

● In 2004, experimentally discovered:

– Possible to grow it on non-
crystalline substrates

– Stable against curve structure 
formation and thermal fluctuations 

– Charge carriers are massless Dirac 
fermions

A.K. Geim and K.S. Novoselov., “The Rise of Graphene” Nature 
Materials, vol. 6, no. 3, pp. 183-191, March 2007

Graphene: is a flat monolayer of carbon 
atoms packed into a 2D honeycomb lattice.
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2D crystals

One atom thick material,

2-layer, 3-layer graphene…  

100 layers

2D2D 3D3D

10 layers

It depends on the electronic properties and structure, evolving with #layers

→  up to 10 layers, materials have been proved as different types of 2D graphene.
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2D crystals (II)
● Monolayer graphene:

– very simple electron spectra,
– ZERO-bandgap semiconductor, with 

massless charge carriers  
– Grown epitaxially by chemical vapour 

deposition
● Bilayer graphene: massive Dirac fermions

● 3 < layer < 10  graphene → several charge carriers appear, 
overlap between conduction and valence band starts

● > 10 layers → graphite
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Electronic properties

● High mobility µ at 300K, 
–  weakly dependent on T and on the 

carriers concentration n, limited only by 
impurity scattering 

● µ can reach 230 000 cm2/Vs → BALLISTIC 
TRANSPORT

● Linear energy dispersion 
around the Dirac point

● Zero-bandgap 
semiconductor, behaving like 
a metallic material

● Very high crystal quality

Graphene SIlicon

Mobility
(300 K) 
[cm2/Vs]

15000 1400 (e),  
500 (h) 

Intrinsic 
carrier
density

1013 cm-2 1010 cm-3
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QED-like spectrum
→ Collective motion of electrons in a periodic potential gives rise  to low-energy quasi-
particles with zero mass and vF ~ 106 m/s , well described by the relativistic Dirac 
equation. 

→ Electronic properties of graphene arise from this peculiar behavior: their 
measurement probe the QED. 

● At the Dirac point, states belong to two different 
sublattices (A, B) → quasi-particles described by 
two-component wavefunctions (pseudospin, σ).

● Chirality can be defined as the pseudospin 
projection along the direction of motion k. 

 → Many electronic 
processes derive 
from chirality 
and pseudospin 
conservation. 
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Further astonishment: 
Quantum Hall Effect… 

 Quantum Hall Effect = quantum-mechanical version of Hall effect, observed in 2D electron 
systems at low T and subjected to strong magnetic field → conductivity σxy has quantized values, 
being i an integer or a fractional number.

Monolayer graphene  Bilayer graphene

EN~√N

EN~√N(N+1)

EN~N+1/2

Single-layer

Bilayer

Bilayer with electronic gap opened

Landau Level quantizations 
in graphene

N=0 missing
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… and non vanishing conductivity

INSTEAD:
● Measurements down to liquid helium T 

cluster around σmin= 4e2/h

● It's  a chirality effect: observed in both 
massless (single-layer) and massive 
(bilayer) Dirac fermions.

● Theories predict σxy= 4e2/hπ

● Conductivity σxy at the Charge Neutrality Point (CNP) should be zero, 
leading to a metal-insulator transition, as observed in any other material.
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Possible Applications

PROS
– High mobility
– Mobility is stable against high 

increase of carriers concentrations
– Ballistic transport down to sub-µm 

scale at 300K

● Graphene-based electronics, graphene as conductive sheet or used 
in composite materials.

CONS
– Minimum conductivity, slow 

on-off ratios
– Graphene behaves as metal 

also at CNP 

Ballistic transistors at 
room temperature

Gaps can be induced in doped bilayer 
graphene, or with spatial confinement of 

single-layer graphene
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Graphene-based Radiation Detectors
● Motivation: achieving high energy resolution at room temperature

● The idea: exploiting graphene high sensitivity to local change of 
electrical field, induced by radiation interaction with a semiconductor 
substrate 

● The proposed device: a Graphene Field Effect Transistor (GFET) 

 → The electrical 
conductivity of graphene 
shows a sharp dependence 
on small changes in 
electric field, due to 
ionizing radiation through 
an absorber material.
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GFET: principle of working
● Single-layer graphene coupled with a 

(semiconductor) absorber through an 
insulator buffer layer.

● 4 electrodes, two of them supplying 
constant current through graphene and two 
measuring the voltage drop across the 
graphene → monitoring the resistance.

● The electric field is applied through a gate 
voltage between graphene and the back of 
absorber.● 2 detection modes: 

1) without charge drift (ionization-induced change of E)

2) with charge drift (providing energy resolution)

→ The electric field changes due to resistivity alteration of the absorber 
caused by the interaction with the ionizing radiation.
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Insulator substrate
Using an insulator absorber (undoped Si 
substrate), the voltage drops across all 
the device thickness resulting in a smaller 
field, E~V/d → significantly altered by 
the change of the absorber conductivity 
due to the interacting radiation.

Conductive semiconductor 
reduces the voltage drop to 
the oxide buffer thickness and 
increase the electric field.
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Detection mode I: without charge drift
● Radiation 

interact with 
absorber

● Absorber 
conductivity changes 
and so does the 
electric field

●  Electric field 
change is sensed by 
graphene resistance

Transient change in the resistance is used to detect the passage 
of an interacting particle!

● But how to improve resolution on the energy measurement?

● One-particle event usually provides not-uniform ionization

→ charge deposition morphology is highly random

→ transient change in resistance is very poorly correlated with 
the deposited energy

→ Drift the 
charges towards 
the absorber 
surface
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Detection mode II: with charge drift
● A drift electric field is applied through VG 

between the back of the absorber and graphene
● Electrons are driven to the layer under the 

graphene, independently on where they were 
produced

● Electric field response only depends on the 
number of collected charges → related to the 
total deposited energy in the absorber

● Small reset voltage VF applied horizontally 
between source and drain, to remove 
electrons after collection

→ Constant current applied to graphene 
and the resistance change is monitored.
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Simulated device
● Si-based GFET, with a 1 MeV -ray γ

source 1 cm from the bottom of the 
absorber, emitting into 4  solid angleπ

● Energy deposited is calculated and 
electron trajectories in Si are simulated 
thanks to CASINO simulation packages**

● The electric field response is also modeled 

** P. Hovington et al., Scanning, vol. 19, no. 1, pp. 1-14, Jan, 1997

Device model: square-shaped highly insulating intrinsic silicon substrate (500 m x μ

500 m) with a SiOμ 2 top layer (500 m x 300 nm)μ
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Simulation results

 → simulation results: ionizing events are able to module the 
electric field in the oxide layer (~106-107 V/m) which produces a 
substantial and measurable change in the GFET resistance.

Electron recombination 
probability, @VG = -100 V

● The aspect-ratio (width/thickness) of the absorber strongly affects electron 
recombination probability, increasing with surface area of the absorber→ 
important for high-energy resolution and speed to keep a low aspect-ratio.
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Energy resolution
● Detector architecture limitations:

– Charge trapping (linear function of 
distance)

– Loss of charge
– Noise in resistance measurement

● Intrinsic Poissonian fluctuation 
~√F/N 
–  F=0.115, Fano factor for Si
– Assuming W-value =3.65 eV
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Energy resolution
● Detector architecture limitations:

– Charge trapping (linear function of 
distance)

– Loss of charge
– Noise in resistance measurement

Contribution from the 
loss of charge due to 
recombination depends 
on the aspect-ratio:

– 1 → 0.01%
– 2 → 0.1%

● From the derivative of Dirac curve( R/ nδ δ ), 
the energy resolution (η) associated with 
the resistance noise in graphene is then 
calculated as:  

                           With 

 

● Intrinsic Poissonian fluctuation 
~√F/N 
–  F=0.115, Fano factor for Si
– Assuming W-value =3.65 eV
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Energy resolution (II)
● Total
● Poisson statistics
● Resistance noise
● Carrier recombination

● The total energy resolution is the result of two competitive trends:
– The decrease of the graphene resistance as the energy release increases. 
–  The decrease of the Dirac curve slope with increasing energy, resulting in 

larger uncertainty on charge density measurement.
● For E>50 keV, Poisson fluctuations dominate.



 L.Zani – Pisa, 21/09/2017 21

Conclusion
Graphene-based sensors have been proved to offer many advantages 

with respect to traditional sensors:

– Sharp resistance change induced by external 
electric field modulation → BUILT-IN 
PREAMPLIFIER

–  Detector (graphene) decoupled from the 
absorber (substrate) → more flexibility in the 
absorber choice.

– Ultra-low electrical noise: high graphene 
conductivity, also at Dirac point where it 
reaches its minimum (maximum resistivity), 
allows a significant noise reduction.

– Relatively easy fabrication, can be deposited 
on various absorber.

 → avoid material budget, 
bump bonding limitations 
due to the necessity of 
“physically” bond electronics 
(readout chip) and the 
sensor.

 → no stringent requirements 
on absorber purity and 
carrier mobility/lifetime 
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