APPLICATION 00000000000

DQ P

Synchrotron Radiation: Generation and Application in Accelerator Physics

Laura Torino

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

February 5, 2014 Pisa, Italy

February 5, 2014, Pisa

Laura Torino

200

(日)

SYNCHROTRON RADIATION

GENERATION

APPLICATION

Laura Torino

February 5, 2014, Pisa

SYNCHROTRON RADIATION

The electromagnetic radiation emitted when a high energetic charged particle is accelerated radially is called *Synchrotron Radiation*

- High radiation flux
- High brilliance
- Wide radiation spectrum
- ► Tunability
- Defined polarization

<ロト < 同ト < 三ト

CHARACTERISTICS

- ψ : Emission angle
- ω : Radiation frequency
- c: Speed of light
- *r*₀: Classical electron radius
- p_T : Transverse momentum
 - γ : Lorentz factor

$$\omega_c: \frac{3c\gamma^3}{2\rho} = \frac{\varepsilon_c}{\hbar}$$

 F_{σ}, F_{π} : Combination of Airy functions

イロト イポト イヨト イヨト

Observed Power Distribution

$$\frac{\mathrm{d}^2 P_{ob}(\omega,\psi)}{\mathrm{d}\omega \mathrm{d}\psi} = \frac{4\pi c r_0 \dot{p}_T^2 \gamma^3}{3\omega_c m c^2} (F_\sigma(\omega,\psi) + F_\pi(\omega,\psi))$$

A)

February 5, 2014, Pisa

∃ 3

CHARACTERISTICS

- ψ : Emission angle
- ω : Radiation frequency
- c: Speed of light
- *r*₀: Classical electron radius
- p_T : Transverse momentum
 - γ : Lorentz factor

$$\omega_c: \frac{3c\gamma^3}{2\rho} = \frac{\varepsilon_c}{\hbar}$$

 F_{σ}, F_{π} : Combination of Airy functions

イロト イポト イヨト イヨト

Observed Power Distribution

$$\frac{\mathrm{d}^2 P_{ob}(\omega,\psi)}{\mathrm{d}\omega \mathrm{d}\psi} = \frac{4\pi c r_0 \dot{p}_T^2 \gamma^3}{3\omega_c m c^2} (F_\sigma(\omega,\psi) + F_\pi(\omega,\psi))$$

A)

February 5, 2014, Pisa

3 3

o obser

A)

GENERATION

CHARACTERISTICS

- ψ : Emission angle
- ω : Radiation frequency
- c: Speed of light
- *r*₀: Classical electron radius
- p_T : Transverse momentum
 - γ : Lorentz factor

$$\omega_c: \frac{3c\gamma^3}{2\rho} = \frac{\varepsilon_c}{\hbar}$$

 F_{σ}, F_{π} : Combination of Airy functions

イロト イポト イヨト イヨト

Observed Power Distribution

$$\frac{\mathrm{d}^{2}P_{ob}(\omega,\psi)}{\mathrm{d}\omega\mathrm{d}\psi} = \frac{4\pi cr_{0}\dot{p}_{T}^{2}\gamma^{3}}{3\omega_{c}mc^{2}}(F_{\sigma}(\omega,\psi) + F_{\pi}(\omega,\psi))$$

February 5, 2014, Pisa

3 3

CHARACTERISTICS

- ψ : Emission angle
- ω : Radiation frequency
- c: Speed of light
- *r*₀: Classical electron radius
- p_T : Transverse momentum
 - γ : Lorentz factor

$$\omega_c: \frac{3c\gamma^3}{2\rho} = \frac{\varepsilon_c}{\hbar}$$

 F_{σ}, F_{π} : Combination of Airy functions

イロト イポト イヨト イヨト

Observed Power Distribution

$$\frac{\mathrm{d}^2 P_{ob}(\omega,\psi)}{\mathrm{d}\omega \mathrm{d}\psi} = \frac{4\pi c r_0 \dot{p}_T^2 \gamma^3}{3\omega_c m c^2} (F_\sigma(\omega,\psi) + F_\pi(\omega,\psi))$$

A)

February 5, 2014, Pisa

∃ 3

CHARACTERISTICS

- ψ : Emission angle
- ω : Radiation frequency
- c: Speed of light
- *r*₀: Classical electron radius
- p_T : Transverse momentum
 - γ : Lorentz factor

$$\omega_c: \frac{3c\gamma^3}{2\rho} = \frac{\varepsilon_c}{\hbar}$$

 F_{σ}, F_{π} : Combination of Airy functions

Observed Power Distribution

$$\frac{\mathrm{d}^2 P_{ob}(\omega,\psi)}{\mathrm{d}\omega \mathrm{d}\psi} = \frac{4\pi c r_0 \dot{p}_T^2 \gamma^3}{3\omega_c m c^2} (F_{\sigma}(\omega,\psi) + F_{\pi}(\omega,\psi))$$

Laura Torino

February 5, 2014, Pisa

4 ロ ト 4 日 ト 4 王 ト 4 王 ト 9 へ ()
3

POWER DISTRIBUTION

POWER DISTRIBUTION

Laura Torino

SYNCHROTRON RADIATION

GENERATION

APPLICATION

Laura Torino

February 5, 2014, Pisa

SYNCHROTRON LIGHT SOURCES

Because of its peculiar characteristics synchrotron radiation used for experiments is produced at dedicated accelerator facilities with specific characteristics

- ▶ Electron beam energy (≃ GeV)
- Low emittance $(\simeq 10 \text{ nm rad})$
- Full energy injection system
- Compact lattice to insert Insertion Devices
- High reliability

MQ P

SYNCHROTRON LIGHT SOURCES

Because of its peculiar characteristics synchrotron radiation used for experiments is produced at dedicated accelerator facilities with specific characteristics

- ▶ Electron beam energy (≃ GeV)
- Low emittance $(\simeq 10 \text{ nm rad})$
- Full energy injection system
- Compact lattice to insert Insertion Devices
- High reliability

MQ P

APPLICATION 00000000000

SYNCHROTRON RADIATION GENERATION

To provide synchrotron radiation to experiments three different devices are used:

Bending Magnet

Wiggler/Undulator

Part of the machine

Inserted in straight sections

WIGGLERS VS UNDULATORS

High photon flux \downarrow Increase the number of magnetic poles

$$K = \frac{eB\lambda_0}{2\pi\beta mc} \simeq 0.0934B[T]\lambda_0[mm]$$

Wigglers *K* >> 1 Increase the photon energy

- $\varepsilon_c[\text{keV}] =$ 0.665 $B[\text{T}]E^2[\text{GeV}^2]$
- High magnetic field are used

Undulators $K \simeq 1$ Quasi-monochromatic radiation

•
$$\lambda_0 = \left(\frac{1}{\beta} - 1\right)L$$

 Interference between the light produced by the same electron at each wiggle

GENERATED RADIATION

Laura Torino

February 5, 2014, Pisa

BEAMLINES

Once produced the radiation is guided to the beamlines

BEAMLINES

Once produced the radiation is guided to the beamlines

SYNCHROTRON RADIATION

GENERATION

APPLICATION

Laura Torino

February 5, 2014, Pisa

BEAM DIAGNOSTIC USING SR

Advantages

- Produced "for free"
- ► Wide spectrum
- ► Real-time
- Non-invasive

Disadvantages

- Need of a source
- Radiation exposure
- "Only" for light particle

イロト イボト イヨト イヨト

Machine design

DQ P

BEAM DIAGNOSTIC USING SR

SR characteristics Beam characteristics

Advantages

- Produced "for free"
- ► Wide spectrum
- ► Real-time
- Non-invasive

Disadvantages

- Need of a source
- Radiation exposure
- "Only" for light particle

イロト イボト イヨト イヨト

Machine design

Visible radiation coming from a bending and extracted through a mirror chicane

DQ P

DIAGNOSTIC BEAMLINE

Laura Torino

February 5, 2014, Pisa

13

APPLICATION 0000000000

DIAGNOSTIC BEAMLINE

Laura Torino

February 5, 2014, Pisa

13

DIAGNOSTIC USING SR

Transverse beam measurements

- Beam size (X-Rays)
- ► Beam size (Visible)

Longitudinal beam measurements

- Filling pattern
- Bunch size

BEAM SIZE-PINHOLE

Problem

Electron machines \Rightarrow Beam size \simeq tens of μ m or smaller \updownarrow Diffraction limited using visible radiation ψ $d = \frac{\lambda}{2u\sin\theta} \simeq 100\mu$ m

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

BEAM SIZE-PINHOLE

Problem

Electron machines \Rightarrow Beam size \simeq tens of μ m or smaller \updownarrow Diffraction limited using visible radiation \Downarrow $d = \frac{\lambda}{2\pi \sin \theta} \simeq 100 \mu$ m

BEAM SIZE-PINHOLE

Problem

Electron machines \Rightarrow Beam size \simeq tens of μ m or smaller \uparrow Diffraction limited using visible radiation \downarrow $d = \frac{\lambda}{2n\sin\theta} \simeq 100\mu$ m

Solution Use X-Rays ↓ Need a different frontend & Need a device set-up suitable for X-Rays

イロト イボト イヨト イヨト

DQ C

BEAM SIZE-PINHOLE

Problem

Electron machines \Rightarrow Beam size \simeq tens of μ m or smaller \updownarrow Diffraction limited using visible radiation \Downarrow $d = \frac{\lambda}{2n\sin\theta} \simeq 100\mu$ m

Solution

Use X-Rays ↓ Need a different frontend & Need a device set-up suitable for X-Rays

- X-Rays $\simeq 40 \, \text{keV}$
- ▶ Enlarge Factor ≃ 2:5
- Hole $\simeq 10 \,\mu \text{m}$
- YAG screen + CCD camera

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

February 5, 2014, Pisa

DQ C

BEAM SIZE-INTERFEROMETRY

Measurement of the first order of spatial coherence of the synchrotron radiation using a double slit interferometer

$$\sigma = \frac{\lambda d_0}{\pi D} \sqrt{\frac{1}{2} \ln \frac{1}{V}} \qquad \qquad V = \frac{I_{Max} - I_{Min}}{I_{Max} + I_{Min}}$$

) Q (~

BEAM SIZE-INTERFEROMETRY

Measurement of the first order of spatial coherence of the synchrotron radiation using a double slit interferometer

$$\sigma = \frac{\lambda d_0}{\pi D} \sqrt{\frac{1}{2} \ln \frac{1}{V}}$$

$$V = \frac{I_{Max} - I_{Min}}{I_{Max} + I_{Min}}$$

Using good quality optical components \downarrow Beam size < 10 μ m can be achieved

Laura Torino

LONGITUDINAL MEASUREMENTS

The longitudinal structure of a circular accelerator is defined by the beam revolution period and the accelerating RF-frequency $h = T \times f_{RF}$ The machine is divided into *h* **Buckets**. Each bucket can be filled with a bunch

Filling Pattern

The scheme of distribution of bunches among the machine buckets

February 5, 2014, Pisa

SYNCHROTRON RADIATION	GENERATION	APPLICATION
000	00000	000000000000

FILLING PATTERN-TCSPC

Time Correlated Single Photon Counting

Laura Torino

February 5, 2014, Pisa

FILLING PATTERN-TCSPC

FILLING PATTERN-TCSPC

Dynamic Range better than $10^3 \Rightarrow$ Also bunch purity experiments

Laura Torino

February 5, 2014, Pisa

BUNCH LENGTH-STREAK CAMERA

NOT ONLY SLS!

Electron Machines/Linear Collider

LHC

- ► Bunch Purity with TCSPC
- Imaging
- Interferometry

Possibility of using undulators to increase the photon flux

イロト イポト イヨト イヨト

Muon Storage Rings

Need to know the muon energy \Rightarrow Measure the μ g-2 using SR emitted by muon decay electrons

 $\omega_a = a_\mu \gamma \omega_{cic}$

February 5, 2014, Pisa

nac

SUMMARY

- Synchrotron radiation
 - Physical characteristics
- Synchrotron Radiation generation
 - Insertion Devices
- Application in machine diagnostic
 - Transverse beam size
 - Longitudinal measurements

DQ C

SUMMARY

- Synchrotron radiation
 - Physical characteristics
- Synchrotron Radiation generation
 - Insertion Devices
- Application in machine diagnostic
 - Transverse beam size
 - Longitudinal measurements

イロト イボト イヨト イヨト

This project is funded by the European Union under contract PITN-GA-2011-289485

February 5, 2014, Pisa

· ≣ 22 nac