Wavelet analysis as a multiresolution method for new particle searches.

Margherita Spalla, Università di Pisa.

Summary

- The problem of searching small signals at unknown mass in high energy physics.
 - Review of standard approach.
- Investigation of a new analysis method (wavelet analysis).
 - Definition
 - Inspection of properties
 - Data
 - Comparison with other methods

Context

- The search of new physics phenomena is one of the most relevant topic in recent years high energy physics.
 - Direct search at accelerators (LHC) requires an enormous effort from the worldwide physic community.
 - Up to now, no evidence of new physics have been found at LHC.
- The problem of searching a new particle in LHC-like conditions:
 - The signal is very small.
 - The new particle's mass is unknown.
 - The background is in general (very) huge.

Particle measurement: a reminder

- A decaying particle is detectable as a resonance in the invariant mass spectrum of it's decay products.
 - Both it's mass and cross section are determined from the mass spectrum.
- In the scenario we're considering, such a signal should be distinguished among a background orders of magnitude huger than the signal itself.
 - Background shape can be simulated with MonteCarlo (MC) or fitted to the data themselves.
 - Any excess with respect to background is then considered.
 - Standard statistical tools are applied to determine if a given excess is due to statistical fluctuation or is the evidence of a new particle.

Vlargherita Spalla

Hypothesis test

- Check if the data are <u>incompatible</u> with a given hypothesis (*null hypothesis* H₀).
 - This is done computing the probability (*p-value*) of finding an excess equal or greater than the one in data.
 - A small *p-value* indicates that the null hypothesis can be rejected (i.e. the excess is a signal)
- More complex extensions of the hypothesis test have been developed for the case in which there is no information on the mass of eventual signals (multiple hypothesis test, Bump Hunter).
- In most cases, this kind on analysis relies on background modeling.

Alternative method: wavelet analysis

- Wavelet analysis was developed to detect localized structures in time series, it is based on *wavelet transform*.
 - Wavelet transform is an evolution of Fourier transform, substituting the plane wave function with a local complex function $\Psi(\xi)$.

$$\hat{x}(\omega) = \int x(t)e^{-i\omega t}dt \quad \Rightarrow \quad W(t,s) = \int x(t')\psi^*\left(\frac{t-t'}{s}\right)dt'$$

- It can be applied to the analysis of any random variable *m* of density *f(m)*.
 - Here, f(m) is the invariant mass spectrum.
- It is applied in a variety of fields:
 - Denoising tool (e.g. in gravitational waves experiments)
 - Data compression (JPEG standard)
 - Analysis of quasi periodic phenomena (geophysics, metereology)
 - Detection of weak light sources in photon counting detection images

Wavelet analysis: an introducton

- The wavelet analysis is a multiscale method: it allows to separate structures of different dimension in mass.
- Wavelet transform (continuous):
 - Here, ψ is the *Mexican Hat* (DoG) function.
 - It can be any local function with zero mean.

 $W(m,s) = \int f(m')\psi^*\left(\frac{m-m'}{s}\right)dm'$

-2

0.40.2

-0.2 -0.4 Margherita Spalla

Varying *m* and the *scale s*, *W(m,s)* gives a global
$$\int_{-0.4}^{-0.4} \int_{-0.4}^{-0.4} \int_{-0$$

$$W(m = n \cdot \delta m, s) = \sum_{n'=0}^{N-1} x_{n'} \cdot \psi^* \left(\frac{(n'-n)\delta m}{s}\right)$$

Wavelet analysis: an example

Margherita Spalla

11/06/14

11/06/14

- The wavelet transform of a gaussian signal is expected to be a bellshaped function of *m*, peaking at the signal mass.
 - The peak height can be an estimator of the number of signal events

Non flat background

- A non flat background strongly affects the wavelet transform, wavelet transform: W(m.Js) making difficult to identify the signal. scale index
 - With an appropriate choice of acceptable scales region and contour levels, a not too small signal can still be visible.
 - The method performances are strongly reduced.

40

35

30

25

20

15

150

100

500

-500

Vlargherita Spalla

11/06/14

- A more efficient solution is to fit the background shape and subtract the fit result from real data.
- Since the wavelet analysis is sensitive to any small structure, fit quality is a very delicate point.
 - Simulated samples represent the ideal case in which the background is a pure exponential, this is not the case in real data.

Testing the method: W(m,s) vs Number of signal events

- Background samples with a gaussian signal (μ=100 GeV σ=15 GeV) have been generated using toy MonteCarlos.
- The height of *W(m,s)* peaks has been measured varying the number of signal events (*S*).
 - Only peaks found inside the acceptance region $[\mu-\sigma;\mu+\sigma]$ are considered.
- A first check of the method has been done generating only signal events.

Margherita Spalla

13

Testing the method: W(m,s) vs Number of signal events

- Adding 10⁵ (exponential) background events W maxima height is still a linear function of S with good approximation.
 - The background has been fitted and subtracted before the wavelet transform.
 - The constant term has increased because of background.
 - The slope has variation smaller than percent.

- An hypothesis test is performed locally, evaluating W(m,s)distribution, fixed *m*,*s*.
 - x_n are Poisson variables: we assume gaussian approximation to be valid.
 - The data arithmetic mean is subtracted before making the wavelet **»** transform, then x_n should have zero mean.

$$W(m,s) = \sum_{n'=0}^{N-1} x_{n'} \cdot \psi^* \left(\frac{(n'-n)\delta m}{s} \right) \implies W(m,s) \sim N(0,\sigma_{m,s})$$

$$\sigma_{(m,s)}^2 = Var(W(m,s)) = \sum_{n'=0}^{N-1} x_{n'} \cdot |c_{n'}(m,s)|^2$$

The *p*-value is computed given the value of $W(m,s)/\sigma_{m,s}$.

$$p\text{-value} = \int_{x_0}^{\infty} N(0, 1) dx$$
$$x_0 = W(m, s) / \sigma_{m, s}$$

Statistical treatment: empirical check

• We have checked the assumption $W(m,s)/\sigma_{m,s} \sim N(0,1)$ computing empirically the cumulative distribution function (CDF) for $W(m,s)/\sigma_{m,s}$ using toy MonteCarlos with no signal added.

$$\operatorname{CDF}((W/\sigma)) = \sum_{(W/\sigma)' > (W/\sigma)} (W/\sigma)'$$

• The distribution mean is nonzero: probably because we are considering *W* maxima, not single bins.

wavelet peak: complement of cumulative distribution function

Empirically, the *W/σ* mean is independent on the number of background events.

$$\mu_{flat} = 1.37 \pm 0.01$$

 $\mu_{exp} = 1.31 \pm 0.01$

Margherita Spalla

11/06/14

Efficiency

- Efficiency is computed injecting a gaussian signal $(N(\mu, \sigma))$ of known mass on a simulated background.
 - Efficiency is the fraction of cases in which a W(m,s) peak is found in the mass window $[\mu - \sigma, \mu + \sigma]$.

Estimation of the signal width

- From the theory, a wider signal is expected to peak at larger scales (i.e. at larger scale index j_s)
- This property has been investigated using toy MonteCarlos.

11/06/14

- Invariant mass of jet pairs produced in association with a leptonically decaying *W*.
 - Data acquired by the ATLAS experiment in 2011: Vs=7 TeV and L=4.702 fb^{-1.}
 - The Standard Model main contribute is the diboson production (*WW/WZ*).
 - Cross section from the ATLAS collaboration:

 $\sigma_{WW/WZ} = 72 \pm 9 \text{ (stat.)} \pm 15 \text{ (syst.)} \pm 13 \text{ (MC stat)} \text{ pb}$

- Dijets events are selected by requiring a $W \rightarrow Iv$ decay.
 - Events must contain one single charged lepton passing the object selection and large missing transverse energy (i.e. a neutrino)
 - Cut on lepton-neutrino transverse mass to select W events.
- A further selection is applied to jets to reduce background.

W/Z

Application to real data: M_{ii} samples

- The analysis have been performed independently for two channels: electron channel and muon channel.
 - Depending if the selected lepron is an electron or a muon.
- For most of our analysis, the combined sample will be used.

 With a rough evaluation of the selection acceptance the number of expected diboson events is estimated to be of order 10³ for both channels.

- In real data, the background shape is not a simple exponential as in toy models.
 - A combination of gaussian and exponential has been used as fit function.
- Test of the pure exponential approximation:
 - The mass range [130,330] GeV has been used as control region.
 - A simulated signal has been inserted at μ=200 GeV
 - <u>The signal has been detected at the right mass, but its width and</u> <u>number of events are underestimated.</u>

• The method should be calibrated using real data or a more precise MC simulation.

Data analysis: combined (*e*+µ)

Data analysis: results

- A peak is found at the expected mass.
 - The detected number of events is about 1/5 of the expected one (a fewer fraction than obtained with the simulated signal).
 - The underestimation of the signal width is fewer than what observed in the calibration.

	Expected	Measured
Signal events	$\sim 5 \cdot 10^3$	$\sim 1.5 \cdot 10^3$
Signal standard deviation	$\sim 15~{\rm GeV}$	$\sim 10~{\rm GeV}$

- A peak is found in both electron and muon channel treated separately:
 - The masses are clearly compatible
 - The peaks have the same width.
 - The sum of the number of events detected in the two channels is compatible with the number of events measured in the combined case.

Comparison with other methods

- Simple hypothesis test based on the likelihood ratio.
 - \succ Consider a variable x of PDF $f(x; \vartheta_1 \dots \vartheta_n)$. Given a measurement x_0 of x, the likelihood (1) is a function of the parameters ϑ_i

$$L(x_i|\theta_1\dots\theta_n) = f(x_i;\theta_1\dots\theta_n)$$
(1)

- The mass spectrum is divided in a test region, where the signal is expected, and a control region.
 - The number of events in the control region • is used to estimate the background.
- The test statistic is the likelihood ratio Λ .

$$\Lambda = \frac{L(N_T, N_C | S = 0)}{L(N_T, N_C | S \neq 0)} -2 \log \Lambda \sim$$

For this test, the expected mass of the signal must be known. More general cases are being considered at present.

 $\sim \chi^2(1)$

- Generate pseudo-experiments given B and S, for each one compute the *p*-value and plot it.
 - If the null hypothesis is true, the *p*-value is uniformly distributed between 0 and 1.
 - To reproduce the same conditions in the two test, the wavelet peaks are required to have a mass difference smaller than a standard deviation from the inserted signal.

Wavelet *p*-value is only approximately flat: the approximation for W/σ is not perfect.

The distribution does not reach 1 because we are considering local maxima, not single bins.

11/06/14

Direct comparison with wavelet: signal

27

p-Value

Conclusions

- Wavelet analysis provided very promising results with toy MonteCarlo simulations:
 - It is highly sensitive in the detection of small signals over large background
 - It's response is linear in the number of signal events
- When considering more realistic background distributions, the method appears less performant:
 - Further calibration studies should be done in more realistic conditions.
- Further test on known resonances should be done, avoiding patological background conditions.
- Comparative studies with standard research methods should be developed.

BACKUP

11/06/14

 $H(\omega) =$ Heaviside step function, $H(\omega) = 1$ if $\omega > 0$, $H(\omega) = 0$ otherwise.

DOG = derivative of a Gaussian; m = 2 is the Marr or Mexican hat wavelet.

Three wavelet mother functions and their Fourier transform. Constant factors for ψ_0 and $\hat{\psi}_0$ are for normalisation. The plots on the right give the real part (solid) and imaginery part (dashed) for the wavelets as functions of the parameter η .

Reference:

C. Torrence and G. P. Compo, "A practical guide to wavelet analysis," *Bulletin of the American Meteorological society*, vol. 79, no. 1, pp. 61–78, 1998.

Details on wavelet transform calculation

- It is considerably faster to compute the wavelet transform in Fourier space.
 - The discrete Fourier transform of x_n is: $\hat{x}_k = \frac{1}{N} \sum_{n=0}^{N-1} x_n e^{-i2\pi k n/N}$ $\hat{\psi}(s\omega_k)$ is the Fourier transform of a (continuous)
 - function $\psi(m/s)$.
 - W(m,s), as a continuous function of s, can be approximated by computing the wavelet transform for a set of scales. $s_j = s_0 2^{j\delta j}$, j = 0, 1, ..., J
 - s_0 is the smallest resolvable scale: $s_0 = \delta m$
 - δi sets the smallest wavelet resolution: $\delta i = 0.25$
 - J sets the value of the largest scale: J = 44
- Normalization: W(m,s) at different scales must be directly compared, therefore it is necessary that they all have the same normalization.
 - The normalization is fixed for the Fourier transform of the *mother* wavelet function: it is normalized to have unit energy.
 - The wavelet *daughter* are normalized in the same way adding a • normalization constant to their Fourier transform.
- Fourier transform is computed padding with zeroes the end of the mass range: this influence W(m,s) in the region close to the edges.
 - The *Cone of Influence* (COI) is the region in $m \times s$ plane where edge effects are important. \succ Discontinuities at the edges decrease exponentially: at each scale, COI is defined by the 'characteristic length' of this decrease.

Margher

N-1

 $\omega_k = \begin{cases} \frac{2\pi k}{N\delta m} & \text{if } k \leq \frac{N}{2} \\ -\frac{2\pi k}{N\delta m} & \text{if } k > \frac{N}{2} \end{cases}$

 $W(m,s) = \sum \hat{x}_k \hat{\psi}^*(s\omega_k) e^{i\omega_k n\delta m}$

$$\hat{\psi}(s\omega_k) = \left(\frac{2\pi s}{\delta m}\right)^{1/2} \hat{\psi}_0(s\omega_k)$$

W/σ mean: flat background

W/σ mean: exponential background

Efficiency without background subtraction

 Efficiency is the fraction of cases in which a W(m,s) peak is found in the mass window [μ-σ,μ+σ].

Calibration control region: [130,330] GeV

Efficiency in identifying a gaussian signal over a flat background, by fitting the data with a gaussian function superimposed to a

Flat background: 6000 events. Signal: 100 events, μ =100 GeV,

The signal width have been fixed to 15 GeV in the fit.

Half width of the acceptance interval:

15 GeV = signal width

The "Bump Hunter"

- Standard ATLAS tool to extent the hypothesis test to the case of unknown mass.
 - 1. The invariant mass spectrum is divided in regions of varying center and width.
 - 2. For each region, a *p*-value is computed, given the expected background events in each region (obtained with data fitting or MC studies).
 - 3. The smallest *p*-value is chosen: this is the test statistics *X*.
 - 4. A *global p-value* is computed using the PDF of *X*.
- The tool will return the most significant interval and the corresponding global *p*-value.

Ref:

- » ATLAS internal web resources.
- » http://arxiv.org/abs/1101.0390

SELECTION APPLIED TO DATA: OBJECT SELECTION

Objects passing the selection are defined as good objects.

MUON SELECTION.

- Combined muons are used.
- Trigger: EF_mu18_MG, EF_mu18_MG_medium. p₇>25 GeV is required to restrict to the trigger efficiency plateau.
- Track quality cuts.
- |η| < 2.4
- Impact parameter: $|d_0/V\sigma(d_0)| < 3$ and $z_0 < 1$ mm.
- Isolation.

```
Track: \Sigma(p_T^{track})/p_T < 0.15 in a cone of radius R=0.3
```

```
Calorimeter: \Sigma(E_T^{corr})/p_T < 0.14 in a cone of radius R=0.3
```

ELECTRON SELECTION.

- Candidates satisfying the *tight++* identification criteria.
- Trigger: EF_e20_medium, EF_e22_medium, EF_e22vh_medium1.
 p_T>25 GeV is required to restrict to the trigger efficiency plateau.
- $|\eta| < 2.47$, excluding $1.37 < |\eta| < 1.52$.
- Impact parameter: $|d_0/V\sigma(d_0)| < 10$ and $z_0 < 1$ mm.
- Isolation.

Track: $\Sigma(p_T^{track})/p_T < 0.14$ in a cone of R=0.3

Calorimeter: $\Sigma(E_T^{corr})/p_T < 0.13$ in a cone of R=0.3

JET SELECTION.

- Jets reconstructed with Anti-kt algorithm, passing looser quality criteria.
- p_T > 25 GeV
- |ŋ| < 2.8
- Jet Vertex Fraction > 0.75 to reject jets from pile-up interactions.
- ΔR(j,l) > 0.5, l is the selected lepton. This to remove overlap between jets and energy deposits due to leptons.

Event selection

Dijets events are triggered by requiring a $W \rightarrow lv$ decay.

- Events are firstly pre-selected applying cuts on event quality:
 - Stable beam conditions, absence of large noise bursts or data integrity errors in the LAr, no jets of p_T>20 GeV pointing to the Lar non-sensitive area (*Lar hole*).
 - A reconstructed primary vertex with at least three associated tracks of p_T>0.5 GeV
- Events with one charged lepton passing the object selection.
 - Events are discarded if a second lepton passes the object selection.
 - *Trigger-matching*: a check to verify that the selected lepton is the one that fired the trigger in the event.

- Events containing also a neutrino: Et miss >25 GeV
 - Cleaning cuts are applied to the jets before E_T^{miss} cut to avoid non-physical E_T^{miss} due to jet reconstruction errors.
- \sim <u>Cut on the lepton-neutrino transverse mass</u>: M_T > 40 GeV

Margherita Spalla

Once $W \rightarrow lv$ events are selected, further cuts are applied to jets.

- → with respect to the selection used in Standard Model diboson measurement, fewer cuts are applied to apply wavelet analysis at a more inclusive level.
- At least two jets passing the object selection
- $\Delta \phi(E_t^{miss}, j_1) > 0.8$. Where j_1 is the jet of highest p_T
- The dijet invariant mass is built using the two selected jets of highest p_{τ}

Jet-Jet invariant mass (logarithmic scale), obtained with $L_{int} = 4702 \text{ pb}^{-1}$.

