

Claim

Atomic Physics in high magnetic fields

Stefano Scotto

23/10/2015

Cotutelle Université Toulouse 3, Università di Pisa

Carlo Rizzo, Donatella Ciampini, Ennio Arimondo

ITALO

FRANCESE

université FRANCO

ITALIENNE

Outline

Introduction

Motivations

•High resolution spectroscopy in 0.05- 0.13 T magnetic field

•Spectroscopy in high magnetic fields

•Conclusions and perspectives

LNCMI Laboratoire National des Champs Magnétiques Intenses

The *Laboratoire National des Champs Magnétiques Intenses* (LNCMI) is a large scale CNRS research facility in France, enabling researchers to perform experiments in the highest possible magnetic fields. Continuous fields are available at the Grenoble site (LNCMI-G) and pulsed fields at the Toulouse site (LNCMI-T).

Magnetic fields at LNCMI

LNCMI

CINIS

Time Duration [s]

Rubidium energy diagram

CINIS

transition wavelength : 780.244209686(13) nm

LNCMI

Ground state

 $\mu_{\rm B}/h = 13.99624604(35) \, \text{GHz/T}$

Cambridge university press

Budker & Kimball eds.

5P_{3/2} excited state

⁸⁷Rb excited level in a magnetic field CINIS

No analytical formula exists, thus one has to calculate numerically the energy of every level using standard quantum mechanics

 $g_{j}^{e} = 1.3362(13)$ measured $g_{i}^{e} = 1.33411$ theoretical

QED correction expected at 10⁻⁵-10⁻⁶ level

Arimondo et al., RMP, 1977 Flaumbaum et al., PRA, 2013 Steck, Rubidium 87 D Line Data, 2010

Outline

Introduction

Motivations

High resolution spectroscopy in 0.05- 0.13 T magnetic field

•Spectroscopy in high magnetic fields

•Conclusions and perspectives

RUbidium in High MAgnetic field : RUHMA

Funded by NEXT

Collaboration between BMV group (LNCMI- Toulouse) & BEC Group of Dep. of Physics, University of Pisa, Italy

Goal : •Precise measure of Landé factor •Calibration of strong pulsed and stationary magnetic fields

G. H. Gossel, V. A. Dzuba, V. V. Flambaum, Phys. Rev. A 88, 034501 (2013)

Outline

- Introduction
- Motivations
- High resolution spectroscopy in 0.05- 0.13 T magnetic field
- •Spectroscopy in high magnetic fields
- •Conclusions and perspectives

Halbach magnet

•Eight NdFeB bar (148mmx6mmx6mm) flux density on surface 3200 G, remnant field 1.08 T CINIS

•Three samples realized (B=550 G, 720 G, 1250 G)

•Good homogeneity at the center

Experimental scheme

Sub-Doppler spectroscopy

less absorbed than in the configuration without pump beam CINIS

V

Spectra analysis

LNCMI

CINIS

Identification of all transitions

•Comparison with numerical calculations

Zeeman/Paschen-Back intermediate regime

 $g\mu_{_B}B \le hyperfine structure \rightarrow Zeeman effect \rightarrow |J, F, m_{_F}>$ $g\mu_{_B}B >> hyperfine structure \rightarrow Paschen-Back effect \rightarrow |J, m_{_I}, m_{_P}>$

Open two level systems

NCM

CINIS

Optical pumping towards other states enhances de-population of lower state

Reduction of probe beam absorption

Three and four level cross-overs

小 LNCMI

S. Scotto et al. arXiv:1509.06978

Outline

- Introduction
- Motivations
- •High resolution spectroscopy in Zeeman/Paschen-Back transition
- •Spectroscopy in high magnetic fields
- •Conclusions and perspectives

Mini-cell

Preliminary tests

LNCMI

Fluorescence signal in an electromagnet @ 1.26 T

Perspectives

- •New mini-cell prototype with improved signal to noise ratio
- •Paschen-Back effect on D1 and D2 lines at 60 T
- •Pulsed magnetic field measurements
- •Test of bound state QED at 10⁻⁴ 10⁻⁶
- •Absolute measurement of magnetic field complementary to NMR

THANK YOU FOR YOUR ATTENTION

LNCM