STRONG INTERACTION IN EXTREME CONDITIONS

Andrea Rucci supervised by Prof. Massimo D'Elia

Ph.D. Pre-Thesis | XXXI cycle | 21.09.2017

Table of CONTENTS

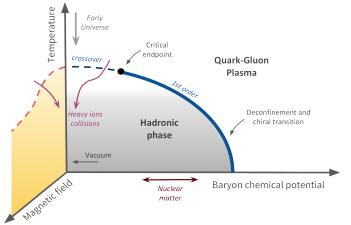
0 INTRODUCTION AND MOTIVATIONS

2 SCREENING MASSES IN MAGNETIC FIELD

3 ON-GOING WORKS AND PROSPECTIVES

Introduction QCD

Quantum Chromodynamics (QCD) is the theory we use to describe strong interactions between color charges

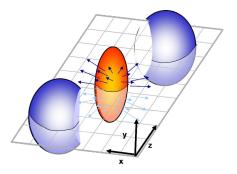

Properties:

SU(3) gauge theory with quarks fermionic matter while gluons are the gauge fields

$$\mathcal{L} = -\frac{1}{2} \text{Tr} \left[F_{\mu\nu} F^{\mu\nu} \right] + \sum_{f} \bar{\psi}^{f} (i \not\!\!D - m_{f}) \psi^{f}$$

- Confinement: colored states cannot be observed
- Asymptotic freedom: coupling constant *g* → 0 for high energies
- Almost exact **chiral symmetry** $SU(N_f)_R \times SU(N_f)_L$ which is spontaneously broken by $\langle \bar{\psi}\psi \rangle$

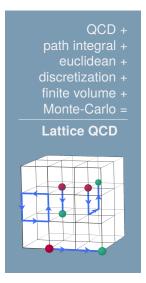
Introduction (A POSSIBLE) QCD PHASE DIAGRAM



- Chiral restauration and deconfinement expected at high temperatures and/or baryon densities
- Magnetic field reduces the critical temperature [Bali et al. '11]

Introduction QCD AND MAGNETIC FIELDS

QCD with strong magnetic fields $eB \simeq m_\pi^2 \sim 10^{15-16} \text{ T}$


- Non-central heavy ion collisions [Skokov et al. '09]
- Possible production in early universe
 [Vachaspati '91]

In heavy ion collisions:

- Expected $eB \simeq 0.3 \text{ GeV}^2$ at LHC in Pb+Pb at $\sqrt{s_{NN}} = 4.5 \text{ TeV}$
- Spatial distribution of the fields and lifetime are still debated

Introduction LATTICE QCD

LQCD formulation allows to study non-perturbative regime of QCD

Quark fields $\psi(n)$ and gluon links $U_{\mu}(n)$ (SU(3) parallel transports) discretized in a $N \times N_t$ volume with spacing *a* and temperature given by $T = 1/(aN_t)$.

Monte-Carlo: system configurations are sampled according to the desired probability distribution, then physical observables are computed over the sample

An external **magnetic field on the lattice** can be introduced through abelian parallel transports $u_{\mu}(n)$

 $U_\mu(n) \to U_\mu(n) u_\mu(n)$

Introduction PROJECT OUTLINE

Aim: Study of the heavy quark $Q\bar{Q}$ interaction in the presence of an external strong magnetic field

Confined phase: in-depth study of the static potential

- anisotropy
- large B limit
- finite T

Phys. Rev. D94, 094007 (2016)

Deconfined phase: influence of the magnetic field on the screened potential

- extraction of the screening masses

Phys. Rev. D95, 074515 (2017)

The Anisotropic Potential STATIC POTENTIAL

The $Q\bar{Q}$ potential is well described by the Cornell formula $V(r) = -\frac{\alpha}{r} + \sigma r + \mathcal{O}\left(\frac{1}{m^2}\right)$

where α is the Coulomb term and σ is the **string tension**.

On the lattice the potential has been largely investigated and it is extracted from the behaviour of some observables

■ At **T=0** from Wilson loops

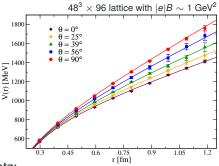
 $V(R) = \lim_{t \to \infty} \log \frac{W(R, t+1)}{W(R, t)}$

with W(R, t) a rectangular $R \times t$ loop made up by gauge links $U_{\mu}(n)$.

$$V(R)\simeq -rac{1}{eta}\log \langle {
m Tr}L^{\dagger}(R){
m Tr}L(0)
angle$$

where L(R) is a loop winding over the compact imaginary direction.

The Anisotropic Potential STUDY AND RESULTS T=0

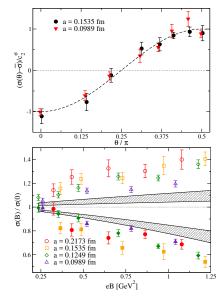

Using a constant and uniform *B*:

- Wilson loop averaged over different spatial directions
- Access to 8 angles using three B orientations

V(R) is anisotropic. Ansatz:

$$V(R,\theta,B) = -\frac{\alpha(\theta,B)}{R} + \sigma(\theta,B)R + V_0(\theta,B)$$
$$\mathcal{O}(\theta,B) = \bar{\mathcal{O}}(B) \left(1 - \sum_n c_{2n}^{\mathcal{O}}(B)\cos(2n\theta)\right)$$

where $\mathcal{O} = \alpha, \sigma, V_0$ and θ angle between quarks and \vec{B} .


The Anisotropic Potential STUDY AND RESULTS T=0

Results:

- Good description in terms of c₂s only
- $\overline{\mathcal{O}}(B)$ s compatible with values at B = 0

Continuum limit:

- Anisotropy c^σ₂ of the string tension survives the limit a → 0
- *c*^{*α*}₂ and *c*^{*V*₀}₂ compatible with zero
- Large field limit: string tension seems to vanish for |e|B ~ 4GeV²

The Anisotropic Potential STUDY AND RESULTS T>0

Results:

- Anisotropy still visible but disappears at large r
- String tension decreases with T
- Cornell form fits only at small B
- Magnetic field effects enhanced near *T_c*

Data compatible with a decrease of T_c due to B [Bali et al. '12]

Screening masses in magnetic Field DEBYE SCREENING

In the deconfined phase the color interaction is screened

Screening mass(es) can be defined non-perturbatively by studying the large distance behaviour of suitable gauge-invariant correlators [Nadkarni '86, Arnold and Yaffe '95, Braaten and Nieto '94]

Looking at the Polyakov correlator $C_{II^{\dagger}}(r, T)$ we expect it to decay

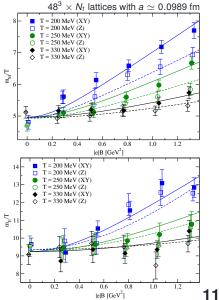
- dominant at small distances
- with correlation length $1/m_E$ with length $1/m_M$ dominant at larger distances

$$\mathcal{C}_{LL^{\dagger}}(\mathbf{r}) \sim rac{1}{r} e^{-m_E(T)r} \qquad \qquad \mathcal{C}_{LL^{\dagger}}(\mathbf{r}) \sim rac{1}{r} e^{-m_M(T)r}$$

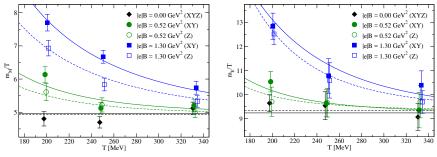
Using symmetries it is possible to separate the electric and magnetic contributions and define correlators decaying with the desired screening masses. [Arnold and Yaffe '95, Maezawa et al. '10, Borsanyi et al. '15]

Screening masses in magnetic Field STUDY AND RESULTS

Some results:


- $m_E > m_M$ and $m_E/m_M \sim 1.5 2$
- masses grow linearly with T

[Maezawa et al. '10, Borsanyi et al. '15 (lattice) Hart et al. '00 (EFT)]


Turning on the magnetic field

we studied the screening masses behaviour along the directions parallel and orthogonal to **B**

- Values at B = 0 agree previous results
- Masses increase with B
- Magnetic mass *m_M* show a clear anisotropic effect

Screening masses in magnetic Field STUDY AND RESULTS

Results:

- Magnetic effects vanish when T increase
- A simple ansatz describing our data

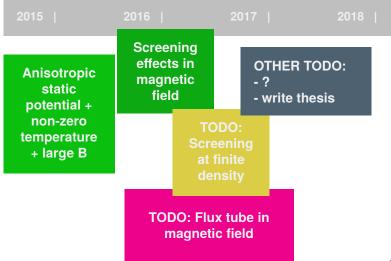
$$rac{m^d}{T} = a^d \left[1 + c_1^d rac{eB}{T^2} ext{atan} \left(rac{c_2^d}{c_1^d} rac{eB}{T^2}
ight)
ight]$$

Data compatible with a decrease of T_c due to B [Bali et al. '12]

PROJECT OUTLINE CONCLUSIONS

The results we obtained about the effects of magnetic fields on $Q\bar{Q}$ interaction show that

- The potential is deeply influenced by B
- Also the screening properties get modified
- All the results agree the picture of a decreasing T_c due to the external field


Possible implications:

 On the heavy quarkonia spectrum: mass variations, mixings and Zeeman-like splitting effects

[Alford and Strickland '13, Bonati et al. '15]

 On heavy meson production rates in non-central ion collisions [Guo et al. '15, Matsui and Satz '86]

PROJECT OUTLINE FUTURE PROSPECTIVES

