what's inside pentaquarks?

what's inside pentaquarks?

OUTLINE:

- Observation of a new state
- Brief history of exotics
- (UN)COLORED BOUND STATES
- Pentaquark models

OBSERVATION OF A NEW STATE

August 2015: observation of an exotic structure reported by the LHCb collaboration [Phys. Rev. Lett. 115, 072001]

- Two resonances with close masses
- Compatible with pentaquark states

PRL 115, 072001 (2015) PHYSICAL REVIEW LETTERS

week ending 14 AUGUST 2015

Ş

Observation of $J/\psi p$ Resonances Consistent with Pentaquark States in $\Lambda_b^0\to J/\psi K^-p$ Decays

R. Aaij et al.*

(LHCb Collaboration) (Received 13 July 2015; published 12 August 2015)

Observations of exotic structures in the $J/\psi p$ channel, which we refer to as charmonium-pentaquark tasks: $n_{i}^{Q} - J/\psi F^{P}$ docys are presented. The data sample corresponds to an integrated luminosity of 3 fb⁻¹ acquired with the LHCb detector from 7 and 8 TeV pp collisions. An amplitude analysis of the three-body fmal state reproduces the two-body mass and angular distributions. To obtain the $J/\psi p$ mass subfactory first the structures seen in the J/ψ preservation. The data structures the the structures seen in the J/ψ preservation. The structure seen ansa of 4380 ± 8± 20 MeV and a with of 2025 ± 18± 80 MeV, while the second is narrower, with a mass of 44408 ± 1.7 ± 2.5 MeV and a with of 205 ± 18± 80 MeV. Notice preferred J^{P} assignments are of opposite parity, who can state S_{12} and J/ψ and S_{12} ± 50 MeV and a with of $92 \pm 5 \pm 19$ MeV and a field for the form f_{22} .

DOI: 10.1103/PhysRevLett.115.072001

PACS numbers: 14.40.Pq, 13.25.Gv

Introduction and summary.—The prospect of hadrons with more than the minimal quark content (q² or qqq) was proposed by Gell-Mann in 1964 [1] and Zweig [2], followed by a quantitative model for two quarks plus ascertain if the structures seen in Fig. 2(b) are resonant in nature and not due to reflections generated by the Λ^* states, it is necessary to perform a full amplitude analysis, allowing for interference effects between both decay

OBSERVATION OF A NEW STATE

The decay of the Λ_b^{o} (ubd) baryon

$$\Lambda_b^{\rm o} \to J/\psi K^- p$$

is dominated by the resonances $\Lambda^* \to K^- p$ (left) but could have also exotic contribution resulting in a resonance in the J/\sqrt{p} mass (right)

 P_c^+ is a pentaquark with minimal content *ccuud* [Phys. Rev. Lett. 115, 072001]

OBSERVATION OF A NEW STATE

Found two resonances with best fit values

 $M \simeq 4380 \text{MeV}$ $\Gamma \simeq 200 \text{MeV}$ $M \simeq 4450 \text{MeV}$ $\Gamma \simeq 39 \text{MeV}$ with J^P assignments $3/2^-$ and $5/2^+$ respectively

Data (black) and fit (red) without (left) and with (right) P_c^+ resonances (blue and magenta points). Remaining dots represent contributions from known Λ^* . [Phys. Rev. Lett. 115, 072001]

A BRIEF HISTORY OF EXOTIC STATES In 1964, both Gell-Mann and Zweig explicitly mentioned the possibility of multiquark states [Phys.Lett. 8 (1964) 214, CERN 8182/TH.401]

> We then refer to the members $u^{\frac{1}{2}}$, $d^{-\frac{1}{2}}$, and $s^{-\frac{1}{2}}$ of the triplet as "quarks" b q and the members of the anti-triplet as anti-quarks \bar{q} . Baryons can now be constructed from quarks by using the combinations (qqq), (qqqqq), etc., while mesons are made out of (q \bar{q}), (qq $\bar{q}\bar{q}$), etc., while mesons are made out of (q \bar{q}), (qq $\bar{q}\bar{q}$), etc. It is assuming that the lowes baryon configuration (qq) gives just the representations 1, 8, and 10 that have been observed, while the lowest meson configuration (q \bar{q}) similarly give: just 1 and 8.

Great progresses in the study of $q\bar{q}$ and qqq hadrons

- theoretically: QCD, quark models, etc.
- experimentally: a full zoo of particles

but still no exotic states (at least prior to the January 2003)!

A BRIEF HISTORY OF EXOTIC STATES

Finally two important steps in 2003

- Θ⁺(1540) by LEPS Collaboration [Phys.Rev.Lett. 91 (2003) 012002] first observation compatible with a light pentaquark, great theoretical impact but not confirmed and then forgotten
- observation of *X*(3872) at Belle [Phys. Rev. Lett. 91 (2003) 262001]

and then other evidences in the	e following years
---------------------------------	-------------------

State	m (MeV)	$\Gamma (MeV)$	J^{PC}	Process (mode)	Experiment $(\#\sigma)$	Year	Status
X(3872)	3871.52 ± 0.20	$1.3 {\pm} 0.6$	$1^{++}/2^{-+}$	$B \rightarrow K(\pi^+\pi^- J/\psi)$	Belle [85, 86] (12.8), BABAR [87] (8.6)	2003	OK
		(<2.2)		$p\bar{p} \rightarrow (\pi^+\pi^- J/\psi) +$	CDF [88–90] (np), DØ [91] (5.2)		
				$B \rightarrow K(\omega J/\psi)$	Belle [92] (4.3), BABAR [93] (4.0)		
				$B \rightarrow K(D^{*0}\overline{D}^0)$	Belle [94, 95] (6.4), BABAR [96] (4.9)		
				$B \rightarrow K(\gamma J/\psi)$	Belle [92] (4.0), BABAR [97, 98] (3.6)		
				$B \rightarrow K(\gamma \psi(2S))$	BABAR [98] (3.5), Belle [99] (0.4)		
X(3915)	3915.6 ± 3.1	28 ± 10	$0/2^{?+}$	$B \rightarrow K(\omega J/\psi)$	Belle [100] (8.1), BABAR [101] (19)	2004	OK
				$e^+e^- \rightarrow e^+e^-(\omega J/\psi)$	Belle [102] (7.7)		
X(3940)	3942^{+9}_{-8}	37^{+27}_{-17}	??+	$e^+e^- \rightarrow J/\psi(D\bar{D}^*)$	Belle [103] (6.0)	2007	NC!
. ,	-0	-17		$e^+e^- \rightarrow J/\psi$ ()	Belle [54] (5.0)		
G(3900)	3943 ± 21	52 ± 11	1	$e^+e^- \rightarrow \gamma(D\bar{D})$	BABAR [27] (np), Belle [21] (np)	2007	OK
V(4008)	4000+121	0.06 ± 0.7	1	e+e- 1 e/=+=- I/e/	Della [104] /7 4)	9007	MCU

[Eur.Phys.J. C71 (2011) 1534]

A BRIEF HISTORY OF EXOTIC STATES

Meanwhile, theoretical development

- possible description of tetraquark $q^2 \bar{q}^2$ state[Phys. Rev. D (1977) 15, 267]
- first "pentaquark" in the literature as baryon $q^4 \bar{q}$ [Phys.Lett.B 195 (1987) 484]
- $\circ\;$ and so on various model proposed

Open questions: structure of these exotic states? why they are so rare?

A quick recall: properties of quarks

- six flavours: *u*, *d*, *s*, *c*, *b*, *t*
- $\frac{1}{2}$ spin particles with electric charge $+\frac{2}{3}e$ or $-\frac{1}{3}e$
- \circ color charged, fondamental representation of $SU(3)_C$

Confinement postulate:

all states and observables are color-singlet

So *q̄q* and *qqq*, *qq̄q̄q* (and so on) are allowed while *q*, *qq* or *qq̄q* missed. 99, 383= 306 99: 383= 108 199: 383 23 10808010 1999: 383835 10104.80100...

With light quarks patterns described by (approximate) flavour symmetry:

 $SU(N_F)_F$ with N_F light flavors

 $\circ m_u \simeq m_d \rightarrow SU(2)$

$$\circ m_d \simeq m_u \simeq m_s \rightarrow SU(3)$$

States have defined charge Q, isospin I_z , strangeness S...

But is difficult to find a model describing states with light quarks

With light quarks patterns described by (approximate) flavour symmetry:

 $SU(N_F)_F$ with N_F light flavors

 $\circ m_u \simeq m_d \rightarrow SU(2)$

$$\circ m_d \simeq m_u \simeq m_s \rightarrow SU(3)$$

States have defined charge Q, isospin I_z , strangeness S...

But is difficult to find a model describing states with light quarks

$n^{2s+1}\ell_J$	J^{PC}		
		$c\overline{c}$	$b\overline{b}$
$1 {}^{1}S_{0}$	0^{-+}	$\eta_c(1S)$	$\eta_b(1S)$
$1 {}^{3}S_{1}$	1	$J/\psi(1S)$	$\Upsilon(1S)$
$1 {}^{1}P_{1}$	1+-	$h_c(1P)$	
$1 {}^{3}P_{0}$	0++	$\chi_{c0}(1P)$	$\chi_{b0}(1P)$
$1 {}^{3}P_{1}$	1++	$\chi_{c1}(1P)$	$\chi_{b1}(1P)$
$1 {}^{3}P_{2}$	2^{++}	$\chi_{c2}(1P)$	$\chi_{b2}(1P)$
$1 {}^{3}D_{1}$	1	$\psi(3770)$	
$2 {}^{1}S_{0}$	0-+	$\eta_c(2S)$	
$2 {}^{3}S_{1}$	1	$\psi(2S)$	$\Upsilon(2S)$
$2 {}^{3}P_{0,1,2}$	$0^{++}, 1^{++}, 2^{++}$		$\chi_{b0,1,2}(2P)$

Charmonium (cī) mass spectrum [PDG, Chin. Phys. C 38, 090001 (2014)] With heavy quarks Q = c, b the pattern is more "familiar"

Good effective description in terms of NR potential models:

- \circ two-body $Q\bar{Q}$ bound state
- description in terms of radial exitation *n*, total spin *S*, orbital *L* and total *J* angular momentums
- usual spectroscopic notation $n^{2S+1}J_L$

PENTAQUARK MODELS

internal (unknown?) bindings?

PENTAQUARK MODELS: MOLECULE

 P_C^+ structure is *nudcc*, then two sub-possibilities:

uud baryon $(p, \Delta^+, ...)$ plus a $c\bar{c}$ heavy meson

- addition of masses do not provide anything close to m_P⁺ values
- needs to combine a cc
 IP-state, but sum of masses exceeds too much

[arXiv:1507.0469]

open charm combination: $u\bar{c}+cud$ or $d\bar{c}+cuu$

- $\circ \text{ very close to } \bar{D}^*\Sigma_c \text{ or } \bar{D}^*\Sigma_c^*$ threshold
- problem with quantum numbers: do not fit the LHCb assignments of J^P

[Phys. Rev. D 92, 094003 (2015)]

PENTAQUARK MODELS: NEW STATE

First possibility: uncorrelated quark models

general aspects: [Nucl.Phys.Proc. 142 (2005) 343]

- quarks in the system interact together, each one with the others
- hadrons are made by filling q and q
 orbitals in a
 mean field or a potential or... (model dependent)
- ground state recipe: all constituents in the lowest orbital
- mass spectrum built from orbital excitations

a common problem: very large multiplicity of states

PENTAQUARK MODELS: NEW STATE

Idea: using diquarks [qq], sub-units of two quarks in 3 color triplet

[a review: Nucl.Phys.Proc. 142 (2005) 343]

Diquark – Diquark – Antiquark Model of Pentaquarks

pentaquark interpretation: $qqqq\bar{q} = [qq][qq]\bar{q}$

• two P_c^+ as orbital excitations [Phys.Lett. B 749 (2015) 289]

lower multiplicity

CONCLUSIONS

- The LHCb observation of P_C^+ revives the attention on exotic pentaquark states
- Both new and old-fashioned models are proposed
- Need for new evidences in order to discern and make clear constraints on theoretical models

what's inside pentaquarks?

BACKUP: LHCb OBSERVATION

Observation of two resonances at LHCb [Phys. Rev. Lett. 115, 072001]

$$M = 4380 \pm 8 \pm 29 \text{MeV} \qquad \Gamma = 205 \pm 18 \pm 36 \text{MeV}$$
$$M = 4449.8 \pm 1.7 \pm 2.5 \text{MeV} \qquad \Gamma = 39 \pm 5 \pm 19 \text{MeV}$$

with preferred assignment $J^p = (3/2^-, 5/2^+)$ but also inverted parities and $(5/2^+, 3/2^-)$ are plausible.

Some details:

- integrated luminosity $\int Ldt = 3 \text{ fb}^{-1}$
- $\circ \sqrt{s} = 7 8$ TeV in *pp* collisions
- $\circ~$ used 14 A* resonances (M_{A*} from \sim 1400 MeV to \sim 2350 MeV)

BACKUP: LHCb OBSERVATION

Invariant mass combinations from $\Lambda^o_b \to J/\psi K^- p$ decay I4+2

BACKUP: LHCb OBSERVATION

