Can the electrostatic field affect a superconductor?

Claudio Puglia

September 16, 2019

Dipartimento di Fisica dell'Università di Pisa, Pisa, Italy

Outline

- Superconductivity in the presence of external electrostatic fields E: what is known
- The BCS supercurrent field-effect transistor: Aluminium and Titanium devices
- Towards the 4K barrier: a Vanadium device
- Exploring a new type of junction: Superconductor/Normal metal/Superconductor (SNS)
- Stochastic behaviour of the switching current
- How change the Switching Current Probability Distributions (SCPD) with the electric field?
- Perspectives & conclusions

Superconductivity in the presence of electrostatic fields *E*

• London brothers (1935): exponential suppression of $E \rightarrow \nabla^2 \vec{E} = \frac{1}{\lambda_L} \vec{E}$ [London & London (1935)]

- Conventional BCS predictions estimate sub-atomic electrical penetration $\equiv \lambda_{TF}$ [Larkin & Migdal (1963)]
- Recent theories: E remains localized at the surface but manifesting itself non-locally deep inside the superconductor ~ ξ₀ or larger [Jakeman et al. (1967); Blatter et al. (1996); Lipavsky et al. (2006)]

• So far no clue on the possibility to manipulate BCS superconductors via field-effect

The dawn of the field-effect

300

0

 $V_{_{G}}(V)$

-16

-32

32

16

Al supercurrent FET

Ti supercurrent FET

60

40

 $V_{_{G}}(V)$

20

40 mV

Towards the 4K barrier: vanadium

Exploring a new type of junction Superconductor/Normal metal/Superconductor (SNS)

De Simoni, G.; Paolucci, F., Puglia, C.; Giazotto, F.; ACS Nano2019,13,7, 7871-7876

Stochastic behaviour of the switching current

Critical current: the minimum current that has a 100% probability of switching the superconductor to its normal state.

Stochastic behaviour of the switching current: Phase Slips

QEL superconducting quantum electronics lab

Electric field and Switching Current Probability Distributions

Ongoing & future experiments

- Detailed investigation of Nb Dayem bridge JJs (high T_c , realization of qbits)
- Investigation of thermal transport, complementary understanding of microscopic mechanisms, FE-controlled phase-coherent caloritronics (thermal transistors, etc.)
- Realization of Dayem bridge-based FE SQUIDs, impact of FE on interference, phase rigidity & phase fluctuations induced by EFs
- Spectroscopy (SSQUID, SGM, STM) to investigate this possible inhomogeneous state
- "Advanced" electronic devices: flip-flop, logic gate (NOT, AND etc.)

Conclusions

- Demonstrated for the first time FE on films made by different BCS superconductors (AI, Ti, V)
- FE is present in fully-superconducting & proximized N metals
- Study of the stochastic behaviour of the switching current in a Dayem bridge device
- Observation of the field-effect on switching current probability distributions
- Quantum information architectures based on JoFETs (i.e., metallic gatemons)
- Remarkable tool to envision novel-concept devices: tunable weak links, interferometers, SP detectors, Coulombic & phase-coherent caloritronic structures

Manifestation of bipolarity

Almost perfect bipolarity

Threshold gate voltages seem to be completely independent

Independence of substrate on FETs performance

FE is inclependent of substrate type

Spatial extension of FE

$$S = 100 \times [I_{C}(V_{si} = 0) - I_{C}(V_{si} = 90V)] / I_{C}(V_{si} = 0)$$

 λ constant up to ~80% $T_{\rm c}$

 $\lambda \sim 770 \pm 150 \text{ nm}$

B-dependence of the supercurrent FET

 V_g^c is weakly dependent on B FE persists up to ~ B_c