A new formulation of Lee-Wick models and its implications for quantum gravity

Marco Piva

Pre-thesis seminar

Supervisor: Prof. Damiano Anselmi

> PhD course Università di Pisa September 21st, 2017

Outline

- 1 Renormalizability and Quantum Gravity
- 2 Minkowski Higher-Derivative Theories
- **3** Lee-Wick Quantum Field Theory
- **4** New Formulation
- **5** Lee-Wick Models and Quantum Gravity
- 6 Conclusions and Future Developments

$$\begin{array}{c} \text{QED} \\ A_{\mu} \\ F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} \\ \mathcal{L} = -\frac{1}{4}F_{\mu\nu}^{2} + \bar{\psi}(i\partial \!\!\!/ - eA \!\!\!/ - m)\psi, \quad \alpha = \frac{e^{2}}{4\pi} \end{array}$$

$$\mathcal{L}_R = -\frac{1}{4}F'^2_{\mu\nu} + \bar{\psi}'(i\partial \!\!\!/ - e'A\!\!\!/ - m')\psi',$$

QED

$$A_{\mu}$$

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$$

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}^{2} + \bar{\psi}(i\partial \!\!\!/ - eA \!\!\!/ - m)\psi, \quad \alpha = \frac{e^{2}}{4\pi}$$

$$g_{\mu\nu}$$

$$R^{\mu}_{\ \nu\rho\sigma} \simeq \partial\partial g + \partial g\partial g + \dots$$

$$\mathcal{L} = -\frac{1}{2\kappa^2}\sqrt{-g}R, \quad \kappa^2 = 8\pi G$$

$$\mathcal{L}_R = -\frac{1}{4}F'^2_{\mu\nu} + \bar{\psi}'(i\partial \!\!\!/ - e'A\!\!\!/ - m')\psi',$$

$$\begin{array}{ccc} \text{QED} & \text{Quantum Gravity} \\ A_{\mu} & g_{\mu\nu} \\ F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} & R^{\mu}_{\ \nu\rho\sigma} \simeq \partial\partial g + \partial g\partial g + \dots \\ \mathcal{L} = -\frac{1}{4}F^{2}_{\mu\nu} + \bar{\psi}(i\partial \!\!\!/ - eA \!\!\!/ - m)\psi, \quad \alpha = \frac{e^{2}}{4\pi} & \mathcal{L} = -\frac{1}{2\kappa^{2}}\sqrt{-g}R, \quad \kappa^{2} = 8\pi G \\ \mathcal{L}_{R} = -\frac{1}{4}F^{\prime 2}_{\mu\nu} + \bar{\psi}'(i\partial \!\!\!/ - e'A' - m')\psi', & \mathcal{L}_{R} = -\frac{1}{2\kappa^{2}}\sqrt{-g}[R + c_{1}R^{2} + c_{2}R_{\mu\nu}R^{\mu\nu} \\ + c_{3}R^{\mu\nu}_{\rho\sigma}R^{\alpha\beta}_{\alpha\beta}R^{\alpha\beta}_{\mu\nu} + \underbrace{\cdots}_{\infty}]. \end{array}$$

In QG renormalization generates an infinite number of new counterterms. A high-energy modification of the theory is necessary.

$$S_{HD} = -\frac{1}{2\kappa^2} \int \mathrm{d}^4 x \sqrt{-g} \Big[R + \alpha R_{\mu\nu} R^{\mu\nu} + \beta R^2 \Big].$$

$$S_{HD} = -\frac{1}{2\kappa^2} \int \mathrm{d}^4 x \sqrt{-g} \Big[R + \alpha R_{\mu\nu} R^{\mu\nu} + \beta R^2 \Big].$$

• Propagator falls off $\sim 1/p^4$ in the UV \Rightarrow improves the convergence;

$$S_{HD} = -\frac{1}{2\kappa^2} \int \mathrm{d}^4 x \sqrt{-g} \big[R + \alpha R_{\mu\nu} R^{\mu\nu} + \beta R^2 \big].$$

- Propagator falls off $\sim 1/p^4$ in the UV \Rightarrow improves the convergence;
- States with negative probability (ghosts) \Rightarrow violates unitarity.

$$S_{HD} = -\frac{1}{2\kappa^2} \int \mathrm{d}^4 x \sqrt{-g} \Big[R + \alpha R_{\mu\nu} R^{\mu\nu} + \beta R^2 \Big].$$

- Propagator falls off $\sim 1/p^4$ in the UV \Rightarrow improves the convergence;
- States with negative probability (ghosts) \Rightarrow violates unitarity.

$$S^{\dagger}S = 1$$

$$-i(\mathbf{T} - \mathbf{T}^{\dagger}) = \mathbf{T}^{\dagger}\mathbf{T}, \qquad \mathbf{S} = 1 + i\mathbf{T};$$

 $\mathrm{Im}\mathbf{T} = \frac{1}{2}\mathbf{T}^{\dagger}\mathbf{T}.$

$$S^{\dagger}S = 1$$

$$-i(\mathbf{T} - \mathbf{T}^{\dagger}) = \mathbf{T}^{\dagger}\mathbf{T}, \qquad \mathbf{S} = 1 + i\mathbf{T};$$

 $\mathrm{Im}\mathbf{T} = \frac{1}{2}\mathbf{T}^{\dagger}\mathbf{T}.$

IDEA: Higher-derivative theory with complex poles.

$$S^{\dagger}S = 1$$

$$-i(\mathbf{T} - \mathbf{T}^{\dagger}) = \mathbf{T}^{\dagger}\mathbf{T}, \qquad \mathbf{S} = 1 + i\mathbf{T};$$

$$\mathbf{Im}\mathbf{T} = \frac{1}{2}\mathbf{T}^{\dagger}\mathbf{T}.$$

IDEA: Higher-derivative theory with complex poles.

• Higher derivatives \Rightarrow improve the convergence;

$$S^{\dagger}S = 1$$

$$-i(\mathbf{T} - \mathbf{T}^{\dagger}) = \mathbf{T}^{\dagger}\mathbf{T}, \qquad \mathbf{S} = 1 + i\mathbf{T};$$

$$\mathbf{Im}\mathbf{T} = \frac{1}{2}\mathbf{T}^{\dagger}\mathbf{T}.$$

IDEA: Higher-derivative theory with complex poles.

- Higher derivatives \Rightarrow improve the convergence;
- Complex conjugated poles \Rightarrow trivial imaginary part.

Minkowski higher-derivative theories

Inconsistencies in Minkowski formulation:

Inconsistencies in Minkowski formulation:

I) Nonlocal, non-Hermitian divergences (also in 4-dim. QG).

$$\Sigma(p) = -\frac{M^4}{2(4\pi)^3} \left[\frac{M^2}{(p^2)^2} - \frac{i}{p^2}\right] \ln\left(\frac{\Lambda_{UV}}{M^2}\right) + \dots, \qquad D = 6.$$

U.G. Aglietti and D. Anselmi, *Inconsistency of Minkowski higher-derivative theories*, Eur. Phys. J. C 77 (2017) 84, 16A2 Renormalization.com and arXiv:1612.06510 [hep-th]. Inconsistencies in Minkowski formulation:

I) Nonlocal, non-Hermitian divergences (also in 4-dim. QG).

$$\Sigma(p) = -\frac{M^4}{2(4\pi)^3} \left[\frac{M^2}{(p^2)^2} - \frac{i}{p^2}\right] \ln\left(\frac{\Lambda_{UV}}{M^2}\right) + \dots, \qquad D = 6.$$

U.G. Aglietti and D. Anselmi, *Inconsistency of Minkowski higher-derivative theories*, Eur. Phys. J. C 77 (2017) 84, 16A2 Renormalization.com and arXiv:1612.06510 [hep-th].

II) Unitarity is spoiled at one loop.

$$-i(\mathbf{T} - \mathbf{T}^{\dagger}) \neq \mathbf{T}^{\dagger}\mathbf{T}.$$

D. Anselmi and M. Piva, *Perturbative unitarity of Lee-Wick quantum field theory*, Phys. Rev. D 96 (2017) 045009, 17A2 Renormalization.com and arXiv:1703.05563 [hep-th]. Inconsistencies in Minkowski formulation:

I) Nonlocal, non-Hermitian divergences (also in 4-dim. QG).

$$\Sigma(p) = -\frac{M^4}{2(4\pi)^3} \left[\frac{M^2}{(p^2)^2} - \frac{i}{p^2}\right] \ln\left(\frac{\Lambda_{UV}}{M^2}\right) + \dots, \qquad D = 6.$$

U.G. Aglietti and D. Anselmi, *Inconsistency of Minkowski higher-derivative theories*, Eur. Phys. J. C 77 (2017) 84, 16A2 Renormalization.com and arXiv:1612.06510 [hep-th].

II) Unitarity is spoiled at one loop.

$$-i(\mathbf{T} - \mathbf{T}^{\dagger}) \neq \mathbf{T}^{\dagger}\mathbf{T}.$$

D. Anselmi and M. Piva, *Perturbative unitarity of Lee-Wick quantum field theory*, Phys. Rev. D 96 (2017) 045009, 17A2 Renormalization.com and arXiv:1703.05563 [hep-th].

The theory cannot be defined directly on Minkowski spacetime.

T.D. Lee and G.C. Wick, Negative metric and the unitarity of the S-matrix, Nucl. Phys. B 9 (1969) 209.

R.E. Cutkosky, P.V Landshoff, D.I. Olive, J.C. Polkinghorne, A non-analytic S matrix, Nucl.Phys. B12 (1969) 281-300.

N. Nakanishi, Lorentz noninvariance of the complex-ghost relativistic field theory, Phys. Rev. D 3, 811 (1971).

More recently: D.Anselmi, C.D. Carone, B. Grinstein, L. Modesto, D. O'Connell, M.Piva, L. Rachwal, I. Shapiro, M. Wise.

T.D. Lee and G.C. Wick, Negative metric and the unitarity of the S-matrix, Nucl. Phys. B 9 (1969) 209.

R.E. Cutkosky, P.V Landshoff, D.I. Olive, J.C. Polkinghorne, A non-analytic S matrix, Nucl.Phys. B12 (1969) 281-300.

N. Nakanishi, Lorentz noninvariance of the complex-ghost relativistic field theory, Phys. Rev. D 3, 811 (1971).

More recently: D.Anselmi, C.D. Carone, B. Grinstein, L. Modesto, D. O'Connell, M.Piva, L. Rachwal, I. Shapiro, M. Wise.

Difficulties:

I) How to obtain the cancelations?

T.D. Lee and G.C. Wick, Negative metric and the unitarity of the S-matrix, Nucl. Phys. B 9 (1969) 209.

R.E. Cutkosky, P.V Landshoff, D.I. Olive, J.C. Polkinghorne, A non-analytic S matrix, Nucl.Phys. B12 (1969) 281-300.

N. Nakanishi, Lorentz noninvariance of the complex-ghost relativistic field theory, Phys. Rev. D 3, 811 (1971).

More recently: D.Anselmi, C.D. Carone, B. Grinstein, L. Modesto, D. O'Connell, M.Piva, L. Rachwal, I. Shapiro, M. Wise.

Difficulties:

I) How to obtain the cancelations?

II) How to cure pinching singularities?

T.D. Lee and G.C. Wick, Negative metric and the unitarity of the S-matrix, Nucl. Phys. B 9 (1969) 209.

R.E. Cutkosky, P.V Landshoff, D.I. Olive, J.C. Polkinghorne, A non-analytic S matrix, Nucl.Phys. B12 (1969) 281-300.

N. Nakanishi, Lorentz noninvariance of the complex-ghost relativistic field theory, Phys. Rev. D 3, 811 (1971).

More recently: D.Anselmi, C.D. Carone, B. Grinstein, L. Modesto, D. O'Connell, M.Piva, L. Rachwal, I. Shapiro, M. Wise.

Difficulties:

- I) How to obtain the cancelations?
- II) How to cure pinching singularities?
- III) How to implement them in a Lagrangian formulation or in a set of Feynman rules?

T.D. Lee and G.C. Wick, Negative metric and the unitarity of the S-matrix, Nucl. Phys. B 9 (1969) 209.

R.E. Cutkosky, P.V Landshoff, D.I. Olive, J.C. Polkinghorne, A non-analytic S matrix, Nucl.Phys. B12 (1969) 281-300.

N. Nakanishi, Lorentz noninvariance of the complex-ghost relativistic field theory, Phys. Rev. D 3, 811 (1971).

More recently: D.Anselmi, C.D. Carone, B. Grinstein, L. Modesto, D. O'Connell, M.Piva, L. Rachwal, I. Shapiro, M. Wise.

Difficulties:

- I) How to obtain the cancelations?
- II) How to cure pinching singularities?
- III) How to implement them in a Lagrangian formulation or in a set of Feynman rules?

T.D. Lee and G.C. Wick, Negative metric and the unitarity of the S-matrix, Nucl. Phys. B 9 (1969) 209.

R.E. Cutkosky, P.V Landshoff, D.I. Olive, J.C. Polkinghorne, A non-analytic S matrix, Nucl.Phys. B12 (1969) 281-300.

N. Nakanishi, Lorentz noninvariance of the complex-ghost relativistic field theory, Phys. Rev. D 3, 811 (1971).

More recently: D.Anselmi, C.D. Carone, B. Grinstein, L. Modesto, D. O'Connell, M.Piva, L. Rachwal, I. Shapiro, M. Wise.

Difficulties:

- I) How to obtain the cancelations?
- II) How to cure pinching singularities?
- III) How to implement them in a Lagrangian formulation or in a set of Feynman rules?

Our formulation solves all these problems.

I) Cancelations

Modify the contour integration in loop integrals (T.D. Lee and G.C. Wick).

I) Cancelations

Modify the contour integration in loop integrals (T.D. Lee and G.C. Wick).

$$iD(p^2, m^2, \epsilon) = \frac{iM^4}{(p^2 - m^2 + i\epsilon)((p^2)^2 + M^4)}$$

I) Cancelations

Modify the contour integration in loop integrals (T.D. Lee and G.C. Wick).

II) Pinching singularities

$$\mathcal{J}(p) = \int \frac{\mathrm{d}^D k}{(2\pi)^D} D(k^2, m_1^2, \epsilon_1) D((k-p)^2, m_2^2, \epsilon_2)$$
(1)

II) Pinching singularities

$$\mathcal{J}(p) = \int \frac{\mathrm{d}^D k}{(2\pi)^D} D(k^2, m_1^2, \epsilon_1) D((k-p)^2, m_2^2, \epsilon_2)$$
(1)

8 / 18

II) Pinching singularities

CLOP prescription (Cutkosky at al.): two different scales M and M' s.t.

$$M - M' = i\delta \tag{2}$$

and send $\delta \to 0$ at the end.

$$M - M' = i\delta \tag{2}$$

and send $\delta \to 0$ at the end. **Problems**:

i) No Lagrangian formulation or Feynman rules.

$$M - M' = i\delta \tag{2}$$

and send $\delta \to 0$ at the end. **Problems**:

- i) No Lagrangian formulation or Feynman rules.
- ii) More complicated diagrams could give other ambiguities.

$$M - M' = i\delta \tag{2}$$

and send $\delta \to 0$ at the end. **Problems**:

- i) No Lagrangian formulation or Feynman rules.
- ii) More complicated diagrams could give other ambiguities.
- iii) Inconsistent at one loop in the case $m_1 \neq m_2$ (D. Anselmi, M.Piva).

$$M - M' = i\delta \tag{2}$$

and send $\delta \to 0$ at the end. **Problems**:

- i) No Lagrangian formulation or Feynman rules.
- ii) More complicated diagrams could give other ambiguities.
- iii) Inconsistent at one loop in the case $m_1 \neq m_2$ (D. Anselmi, M.Piva).

$$M - M' = i\delta \tag{2}$$

and send $\delta \to 0$ at the end.

Problems:

- i) No Lagrangian formulation or Feynman rules.
- ii) More complicated diagrams could give other ambiguities.
- iii) Inconsistent at one loop in the case $m_1 \neq m_2$ (D. Anselmi, M.Piva).

Solution: define LW models as Nonanalytically Wick rotated Euclidean theories.

D. Anselmi and M. Piva, A new formulation of Lee-Wick quantum field theory, JHEP 1706 (2017) 066, 17A1 Renormalization.com and arXiv:1703.04584 [hep-th].
New formulation

Analytic structure of $\mathcal{J}(p)$ in the p^0 complex plane

New formulation

Analytic structure of $\mathcal{J}(p)$ in the p^0 complex plane $\mathbf{p} = 0$ $\lim [p^0]$ $\sqrt{2}M$ $\operatorname{Re}[p^0]$ $\sqrt{2}M$

The amplitude is ill-defined on the real axis above the threshold $p^2 = 2M^2$.

New formulation

 $\mathbf{p} \neq 0$ $\mathbf{p} = 0$ $\lim [p^0]$ $\lim [p^0]$ $\sqrt{2}M$ $\overline{P'}$ $Re[p^0]$ $\sqrt{2}M$ $\operatorname{Re}[p^0]$

Analytic structure of $\mathcal{J}(p)$ in the p^0 complex plane

The amplitude is ill-defined on the real axis above the threshold $p^2 = 2M^2$.

Lorentz invariance seems violated (already noticed by Nakanishi) Deform the branch cuts \leftrightarrow Deform the k integration domain

Deform the branch cuts \leftrightarrow Deform the ${\bf k}$ integration domain

Constraints on the deformation:

• Symmetric w.r.t. the real axis (unitarity).

Deform the branch cuts \leftrightarrow Deform the **k** integration domain

Constraints on the deformation:

- Symmetric w.r.t. the real axis (unitarity).
- Cross the real axis only in $p^2 = 2M^2$ (Lorentz invariance).

Deform the branch cuts \leftrightarrow Deform the **k** integration domain

Constraints on the deformation:

- Symmetric w.r.t. the real axis (unitarity).
- Cross the real axis only in $p^2 = 2M^2$ (Lorentz invariance).

Deform the branch cuts \leftrightarrow Deform the ${\bf k}$ integration domain

Constraints on the deformation:

- Symmetric w.r.t. the real axis (unitarity).
- Cross the real axis only in $p^2 = 2M^2$ (Lorentz invariance).

The amplitude are well defined but nonanalytic.

The deformation is practically hard to implement

We argue that

$$\mathcal{J}_{\mathrm{LW}}^{>}(p) = \frac{1}{2} \left[\mathcal{J}_{\mathrm{LW}}^{0+}(p) + \mathcal{J}_{\mathrm{LW}}^{0-}(p) \right]$$

The deformation is practically hard to implement

We argue that

$$\mathcal{J}_{\mathrm{LW}}^{>}(p) = \frac{1}{2} \left[\mathcal{J}_{\mathrm{LW}}^{0+}(p) + \mathcal{J}_{\mathrm{LW}}^{0-}(p) \right]$$

$$D_{\varphi} = p^{0} e^{i\varphi} - \omega_{M}(\mathbf{k}) - \omega_{M}^{*}(\mathbf{k} - \mathbf{p}), \quad \omega_{M}(\mathbf{k}) = \sqrt{\mathbf{k}^{2} + iM^{2}}, \quad p_{s} = |\mathbf{p}|.$$

$$rac{\mathrm{d}^{3}\mathbf{k}}{D_{arphi}} \propto rac{\mathrm{d} au\mathrm{d}\eta}{ au - i(p_{0}arphi + p_{s}\eta)}$$

•

$$D_{\varphi} = p^{0} e^{i\varphi} - \omega_{M}(\mathbf{k}) - \omega_{M}^{*}(\mathbf{k} - \mathbf{p}), \quad \omega_{M}(\mathbf{k}) = \sqrt{\mathbf{k}^{2} + iM^{2}}, \quad p_{s} = |\mathbf{p}|.$$

$$\frac{\mathrm{d}^{3}\mathbf{k}}{D_{\varphi}} \propto \frac{\mathrm{d}\tau \mathrm{d}\eta}{\tau - i(p_{0}\varphi + p_{s}\eta)}.$$

First $\varphi \to 0$, then $p_{s} \to 0$ $d\tau \mathrm{d}\eta \Big[\mathcal{P}\left(\frac{1}{\tau}\right) + i\pi \mathrm{sgn}(\eta)\delta(\tau) \Big].$

$$D_{\varphi} = p^{0} e^{i\varphi} - \omega_{M}(\mathbf{k}) - \omega_{M}^{*}(\mathbf{k} - \mathbf{p}), \quad \omega_{M}(\mathbf{k}) = \sqrt{\mathbf{k}^{2} + iM^{2}}, \quad p_{s} = |\mathbf{p}|.$$

$$\frac{\mathrm{d}^{3}\mathbf{k}}{D_{\varphi}} \propto \frac{\mathrm{d}\tau \mathrm{d}\eta}{\tau - i(p_{0}\varphi + p_{s}\eta)}.$$

First $\varphi \to 0$, then $p_{s} \to 0$ $d\tau \mathrm{d}\eta \Big[\mathcal{P}\left(\frac{1}{\tau}\right) + \underbrace{i\pi \mathrm{sgn}(\eta)\delta(\tau)}_{0} \Big].$

$$D_{\varphi} = p^{0} e^{i\varphi} - \omega_{M}(\mathbf{k}) - \omega_{M}^{*}(\mathbf{k} - \mathbf{p}), \quad \omega_{M}(\mathbf{k}) = \sqrt{\mathbf{k}^{2} + iM^{2}}, \quad p_{s} = |\mathbf{p}|.$$

$$\frac{\mathrm{d}^{3}\mathbf{k}}{D_{\varphi}} \propto \frac{\mathrm{d}\tau \mathrm{d}\eta}{\tau - i(p_{0}\varphi + p_{s}\eta)}.$$

First $\varphi \to 0$, then $p_{s} \to 0$ $\mathrm{d}\tau \mathrm{d}\eta \Big[\mathcal{P}\left(\frac{1}{\tau}\right) + \underbrace{i\pi \mathrm{sgn}(\eta)\delta(\tau)}_{0} \Big].$
First $p_{s} \to 0$, then $\varphi \to 0^{\pm}$ $\mathrm{d}\tau \Big[\mathcal{P}\left(\frac{1}{\tau}\right) \pm i\pi\delta(\tau) \Big].$

$$D_{\varphi} = p^{0} e^{i\varphi} - \omega_{M}(\mathbf{k}) - \omega_{M}^{*}(\mathbf{k} - \mathbf{p}), \quad \omega_{M}(\mathbf{k}) = \sqrt{\mathbf{k}^{2} + iM^{2}}, \quad p_{s} = |\mathbf{p}|.$$

$$\frac{\mathrm{d}^{3}\mathbf{k}}{D_{\varphi}} \propto \frac{\mathrm{d}\tau \mathrm{d}\eta}{\tau - i(p_{0}\varphi + p_{s}\eta)}.$$

First $\varphi \to 0$, then $p_{s} \to 0$ $\mathrm{d}\tau \mathrm{d}\eta \Big[\mathcal{P}\left(\frac{1}{\tau}\right) + \underbrace{i\pi \mathrm{sgn}(\eta)\delta(\tau)}_{0} \Big].$
First $p_{s} \to 0$, then $\varphi \to 0^{\pm}$ $\mathrm{d}\tau \Big[\mathcal{P}\left(\frac{1}{\tau}\right) \pm i\pi\delta(\tau) \Big].$

A more general prescription

$$\left[\mathcal{P}\left(\frac{1}{\tau}\right) + ia\delta(\tau)\right]\mathrm{d}\tau$$

$$D_{\varphi} = p^{0} e^{i\varphi} - \omega_{M}(\mathbf{k}) - \omega_{M}^{*}(\mathbf{k} - \mathbf{p}), \quad \omega_{M}(\mathbf{k}) = \sqrt{\mathbf{k}^{2} + iM^{2}}, \quad p_{s} = |\mathbf{p}|.$$

$$\frac{\mathrm{d}^{3}\mathbf{k}}{D_{\varphi}} \propto \frac{\mathrm{d}\tau \mathrm{d}\eta}{\tau - i(p_{0}\varphi + p_{s}\eta)}.$$

First $\varphi \to 0$, then $p_{s} \to 0$ $\mathrm{d}\tau \mathrm{d}\eta \Big[\mathcal{P}\left(\frac{1}{\tau}\right) + \underbrace{i\pi \mathrm{sgn}(\eta)\delta(\tau)}_{0} \Big].$
First $p_{s} \to 0$, then $\varphi \to 0^{\pm}$ $\mathrm{d}\tau \Big[\mathcal{P}\left(\frac{1}{\tau}\right) \pm i\pi\delta(\tau) \Big].$

A more general prescription

$$\left[\mathcal{P}\left(\frac{1}{\tau}\right) + ia\delta(\tau)\right]\mathrm{d}\tau$$

$$\mathcal{J} \propto \left[(M^4 + m_1^2 m_2^2) \mathcal{P}\left(\frac{1}{\tau}\right) + a M^2 (m_1^2 - m_2^2) \delta(\tau) \right] \mathrm{d}\tau.$$

$$D_{\varphi} = p^{0} e^{i\varphi} - \omega_{M}(\mathbf{k}) - \omega_{M}^{*}(\mathbf{k} - \mathbf{p}), \quad \omega_{M}(\mathbf{k}) = \sqrt{\mathbf{k}^{2} + iM^{2}}, \quad p_{s} = |\mathbf{p}|.$$

$$\frac{\mathrm{d}^{3}\mathbf{k}}{D_{\varphi}} \propto \frac{\mathrm{d}\tau \mathrm{d}\eta}{\tau - i(p_{0}\varphi + p_{s}\eta)}.$$

First $\varphi \to 0$, then $p_{s} \to 0$ $\mathrm{d}\tau \mathrm{d}\eta \Big[\mathcal{P}\left(\frac{1}{\tau}\right) + \underbrace{i\pi \mathrm{sgn}(\eta)\delta(\tau)}_{0} \Big].$
First $p_{s} \to 0$, then $\varphi \to 0^{\pm}$ $\mathrm{d}\tau \Big[\mathcal{P}\left(\frac{1}{\tau}\right) \pm i\pi\delta(\tau) \Big].$

A more general prescription
$$\begin{bmatrix} \mathcal{P}\left(\frac{1}{\tau}\right) + ia\delta(\tau) \end{bmatrix} d\tau$$
$$\mathcal{J} \propto \left[(M^4 + m_1^2 m_2^2) \mathcal{P}\left(\frac{1}{\tau}\right) + \boxed{aM^2(m_1^2 - m_2^2)\delta(\tau)} \right] d\tau$$

13 / 18

$$D_{\varphi} = p^{0} e^{i\varphi} - \omega_{M}(\mathbf{k}) - \omega_{M}^{*}(\mathbf{k} - \mathbf{p}), \quad \omega_{M}(\mathbf{k}) = \sqrt{\mathbf{k}^{2} + iM^{2}}, \quad p_{s} = |\mathbf{p}|.$$

$$\frac{\mathrm{d}^{3}\mathbf{k}}{D_{\varphi}} \propto \frac{\mathrm{d}\tau \mathrm{d}\eta}{\tau - i(p_{0}\varphi + p_{s}\eta)}.$$

First $\varphi \to 0$, then $p_{s} \to 0$ $\mathrm{d}\tau \mathrm{d}\eta \Big[\mathcal{P}\left(\frac{1}{\tau}\right) + \underbrace{i\pi \mathrm{sgn}(\eta)\delta(\tau)}_{0} \Big].$
First $p_{s} \to 0$, then $\varphi \to 0^{\pm}$ $\mathrm{d}\tau \Big[\mathcal{P}\left(\frac{1}{\tau}\right) \pm i\pi\delta(\tau) \Big].$

A more general prescription
$$\begin{bmatrix} \mathcal{P}\left(\frac{1}{\tau}\right) + ia\delta(\tau) \end{bmatrix} d\tau$$
$$\mathcal{J} \propto \left[(M^4 + m_1^2 m_2^2) \mathcal{P}\left(\frac{1}{\tau}\right) + \boxed{aM^2(m_1^2 - m_2^2)\delta(\tau)} \right] d\tau.$$

No prescription with nonvanishing a is consistent with this formulation. CLOP gives $a=\pi {\rm sgn}(M'-M)$

13 / 18

Discrepancy above the threshold

Our formulation gives physical predictions which differ from the previous ones.

$$\mathcal{L}_{\rm QG} = -\frac{1}{2\kappa^2} \sqrt{-g} \Big[R - \frac{1}{M^4} \big(D_\rho R_{\mu\nu} \big) \big(D^\rho R^{\mu\nu} \big) + \frac{1}{2M^4} \big(D_\rho R \big) \big(D^\rho R \big) \Big]$$

$$\mathcal{L}_{\rm QG} = -\frac{1}{2\kappa^2} \sqrt{-g} \Big[R - \frac{1}{M^4} \big(D_{\rho} R_{\mu\nu} \big) \big(D^{\rho} R^{\mu\nu} \big) + \frac{1}{2M^4} \big(D_{\rho} R \big) \big(D^{\rho} R \big) \Big]$$

Expansion $g_{\mu\nu} = \eta_{\mu\nu} + 2\kappa h_{\mu\nu}, \qquad \eta_{\mu\nu} = \text{diag}(1, -1, -1, -1).$

Propagator in harmonic gauge

$$\langle h_{\mu\nu}(p)h_{\rho\sigma}(-p)\rangle^{\text{free}} = \frac{iM^4}{2(p^2+i\epsilon)} \frac{\eta_{\mu\rho}\eta_{\nu\sigma} + \eta_{\mu\sigma}\eta_{\nu\rho} - \eta_{\mu\nu}\eta_{\rho\sigma}}{(p^2)^2 + M^4}.$$

15 / 18

$$\mathcal{L}_{\rm QG} = -\frac{1}{2\kappa^2} \sqrt{-g} \Big[R - \frac{1}{M^4} \big(D_{\rho} R_{\mu\nu} \big) \big(D^{\rho} R^{\mu\nu} \big) + \frac{1}{2M^4} \big(D_{\rho} R \big) \big(D^{\rho} R \big) \Big]$$

Expansion $g_{\mu\nu} = \eta_{\mu\nu} + 2\kappa h_{\mu\nu}, \qquad \eta_{\mu\nu} = \text{diag}(1, -1, -1, -1).$

Propagator in harmonic gauge

$$\langle h_{\mu\nu}(p)h_{\rho\sigma}(-p)\rangle^{\text{free}} = \frac{iM^4}{2(p^2+i\epsilon)} \frac{\eta_{\mu\rho}\eta_{\nu\sigma} + \eta_{\mu\sigma}\eta_{\nu\rho} - \eta_{\mu\nu}\eta_{\rho\sigma}}{(p^2)^2 + M^4}.$$

$$\mathcal{L}'_{\rm QG} = -\frac{1}{2\kappa^2} \Big[2\Lambda_C + \zeta R - \frac{1}{M^2} R_{\mu\nu} P_n (\Box_c/M^2) R^{\mu\nu} \\ + \frac{1}{2M^2} R Q_n (\Box_c/M^2) R + \mathcal{V}(R, M, \alpha_i) \Big]$$

15 / 18

$$\mathcal{L}_{\rm QG} = -\frac{1}{2\kappa^2} \sqrt{-g} \Big[R - \frac{1}{M^4} \big(D_{\rho} R_{\mu\nu} \big) \big(D^{\rho} R^{\mu\nu} \big) + \frac{1}{2M^4} \big(D_{\rho} R \big) \big(D^{\rho} R \big) \Big]$$

Expansion $g_{\mu\nu} = \eta_{\mu\nu} + 2\kappa h_{\mu\nu}, \qquad \eta_{\mu\nu} = \text{diag}(1, -1, -1, -1).$

Propagator in harmonic gauge

$$\langle h_{\mu\nu}(p)h_{\rho\sigma}(-p)\rangle^{\text{free}} = \frac{iM^4}{2(p^2+i\epsilon)} \frac{\eta_{\mu\rho}\eta_{\nu\sigma} + \eta_{\mu\sigma}\eta_{\nu\rho} - \eta_{\mu\nu}\eta_{\rho\sigma}}{(p^2)^2 + M^4}.$$

$$\begin{aligned} \mathcal{L}'_{\rm QG} &= -\frac{1}{2\kappa^2} \Big[2\Lambda_C + \zeta R - \frac{1}{M^2} R_{\mu\nu} P_n (\Box_c/M^2) R^{\mu\nu} \\ &+ \frac{1}{2M^2} R Q_n (\Box_c/M^2) R + \mathcal{V}(R, M, \alpha_i) \Big] \end{aligned}$$

Problem of uniquness

Superrenormalizable models of quantum gravity are infinitely many.

New quantization prescription

D. Anselmi, On the quantum field theory of gravitational interactions, JHEP 1706 (2017) 086, 17A3 Renormalization.com and arXiv:1704.07728 [hep-th].

New quantization prescription

D. Anselmi, On the quantum field theory of gravitational interactions, JHEP 1706 (2017) 086, 17A3 Renormalization.com and arXiv:1704.07728 [hep-th].

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \varphi \partial^{\mu} \varphi - \frac{\lambda}{4!} \varphi^4$$

Modified Euclidean propagator

$$\frac{p_E^2}{(p_E^2)^2 + \mathcal{E}^4}, \quad \mathcal{E} = \text{ ficticious LW scale}$$

New prescription

$$\lim_{\mathcal{E}\to 0} \frac{p^2}{[(p^2)^2 + \mathcal{E}^4]_{\rm LW}}$$

$$\mathcal{L}_{QG} = -\frac{1}{2\kappa^2} \sqrt{-g} \Big[2\Lambda_C + \zeta R - \frac{\gamma}{M^2} R_{\mu\nu} R^{\mu\nu} + \frac{1}{2M^2} (\gamma - \eta) R^2 \Big], \quad \zeta > 0, \ \gamma < 0.$$

The Lagrangian coincides with Stelle theory but we quantize it in a different way.

$$\mathcal{L}_{QG} = -\frac{1}{2\kappa^2} \sqrt{-g} \Big[2\Lambda_C + \zeta R - \frac{\gamma}{M^2} R_{\mu\nu} R^{\mu\nu} + \frac{1}{2M^2} (\gamma - \eta) R^2 \Big], \quad \zeta > 0, \ \gamma < 0.$$

The Lagrangian coincides with Stelle theory but we quantize it in a different way.

$$\left\langle h_{\mu\nu}(p)h_{\rho\sigma}(-p)\right\rangle_{\Lambda_C=\eta=0}^{\text{free}} = \frac{iM^2}{2p^2\left(\zeta M^2 + \gamma p^2\right)} (\eta_{\mu\rho}\eta_{\nu\sigma} + \eta_{\mu\sigma}\eta_{\nu\rho} - \eta_{\mu\nu}\eta_{\rho\sigma}).$$

With the new prescription it turns into

$$\left\{\frac{1}{p^2+i\epsilon}-\frac{\gamma(\zeta M^2+\gamma p^2)}{\left[(\zeta M^2+\gamma p^2)^2+\mathcal{E}^4\right]_{\rm LW}}\right\}\frac{i}{2\zeta}(\eta_{\mu\rho}\eta_{\nu\sigma}+\eta_{\mu\sigma}\eta_{\nu\rho}-\eta_{\mu\nu}\eta_{\rho\sigma}).$$

$$\mathcal{L}_{QG} = -\frac{1}{2\kappa^2} \sqrt{-g} \Big[2\Lambda_C + \zeta R - \frac{\gamma}{M^2} R_{\mu\nu} R^{\mu\nu} + \frac{1}{2M^2} (\gamma - \eta) R^2 \Big], \quad \zeta > 0, \ \gamma < 0.$$

The Lagrangian coincides with Stelle theory but we quantize it in a different way.

$$\left\langle h_{\mu\nu}(p)h_{\rho\sigma}(-p)\right\rangle_{\Lambda_C=\eta=0}^{\text{free}} = \frac{iM^2}{2p^2\left(\zeta M^2 + \gamma p^2\right)} (\eta_{\mu\rho}\eta_{\nu\sigma} + \eta_{\mu\sigma}\eta_{\nu\rho} - \eta_{\mu\nu}\eta_{\rho\sigma}).$$

With the new prescription it turns into

$$\left\{\frac{1}{p^2+i\epsilon} - \left[\frac{\gamma(\zeta M^2 + \gamma p^2)}{\left[(\zeta M^2 + \gamma p^2)^2 + \mathcal{E}^4\right]_{\rm LW}}\right] \frac{i}{2\zeta} (\eta_{\mu\rho}\eta_{\nu\sigma} + \eta_{\mu\sigma}\eta_{\nu\rho} - \eta_{\mu\nu}\eta_{\rho\sigma}).$$

$$\mathcal{L}_{QG} = -\frac{1}{2\kappa^2} \sqrt{-g} \Big[2\Lambda_C + \zeta R - \frac{\gamma}{M^2} R_{\mu\nu} R^{\mu\nu} + \frac{1}{2M^2} (\gamma - \eta) R^2 \Big], \quad \zeta > 0, \ \gamma < 0.$$

The Lagrangian coincides with Stelle theory but we quantize it in a different way.

$$\left\langle h_{\mu\nu}(p)h_{\rho\sigma}(-p)\right\rangle_{\Lambda_C=\eta=0}^{\text{free}} = \frac{iM^2}{2p^2\left(\zeta M^2 + \gamma p^2\right)} (\eta_{\mu\rho}\eta_{\nu\sigma} + \eta_{\mu\sigma}\eta_{\nu\rho} - \eta_{\mu\nu}\eta_{\rho\sigma}).$$

With the new prescription it turns into

$$\left\{\frac{1}{p^2+i\epsilon} - \boxed{\frac{\gamma(\zeta M^2 + \gamma p^2)}{\left[(\zeta M^2 + \gamma p^2)^2 + \mathcal{E}^4\right]_{\rm LW}}}\right\}\frac{i}{2\zeta}(\eta_{\mu\rho}\eta_{\nu\sigma} + \eta_{\mu\sigma}\eta_{\nu\rho} - \eta_{\mu\nu}\eta_{\rho\sigma}).$$

A unique, renormalizable and unitary theory of QG in 4 dim.

$$\mathcal{L}_{QG} = -\frac{1}{2\kappa^2} \sqrt{-g} \Big[2\Lambda_C + \zeta R - \frac{\gamma}{M^2} R_{\mu\nu} R^{\mu\nu} + \frac{1}{2M^2} (\gamma - \eta) R^2 \Big], \quad \zeta > 0, \ \gamma < 0.$$

The Lagrangian coincides with Stelle theory but we quantize it in a different way.

$$\left\langle h_{\mu\nu}(p)h_{\rho\sigma}(-p)\right\rangle_{\Lambda_C=\eta=0}^{\text{free}} = \frac{iM^2}{2p^2\left(\zeta M^2 + \gamma p^2\right)} (\eta_{\mu\rho}\eta_{\nu\sigma} + \eta_{\mu\sigma}\eta_{\nu\rho} - \eta_{\mu\nu}\eta_{\rho\sigma}).$$

With the new prescription it turns into

$$\left\{\frac{1}{p^2+i\epsilon} - \boxed{\frac{\gamma(\zeta M^2 + \gamma p^2)}{\left[(\zeta M^2 + \gamma p^2)^2 + \mathcal{E}^4\right]_{\rm LW}}}\right\} \frac{i}{2\zeta} (\eta_{\mu\rho}\eta_{\nu\sigma} + \eta_{\mu\sigma}\eta_{\nu\rho} - \eta_{\mu\nu}\eta_{\rho\sigma}).$$

A unique, renormalizable and unitary theory of QG in 4 dim.

Unitarity can be proved only if $\Lambda_C = 0$ but realistic models have $\Lambda_C \neq 0$. The cosmological constant might be an anomaly of unitarity.

17 / 18

• Solution of the quantum gravity problem: reconcile renormalizability and unitarity.

- Solution of the quantum gravity problem: reconcile renormalizability and unitarity.
- The new formulation gives well defined amplitudes and unitarity equations, physically different from the previous formulations.

- Solution of the quantum gravity problem: reconcile renormalizability and unitarity.
- The new formulation gives well defined amplitudes and unitarity equations, physically different from the previous formulations.
- Prediction of nonanalitycity of the amplitudes.

- Solution of the quantum gravity problem: reconcile renormalizability and unitarity.
- The new formulation gives well defined amplitudes and unitarity equations, physically different from the previous formulations.
- Prediction of nonanalitycity of the amplitudes.

- Solution of the quantum gravity problem: reconcile renormalizability and unitarity.
- The new formulation gives well defined amplitudes and unitarity equations, physically different from the previous formulations.
- Prediction of nonanalitycity of the amplitudes.
- Proof of unitarity beyond one loop.

- Solution of the quantum gravity problem: reconcile renormalizability and unitarity.
- The new formulation gives well defined amplitudes and unitarity equations, physically different from the previous formulations.
- Prediction of nonanalitycity of the amplitudes.
- Proof of unitarity beyond one loop.
- Study the physics of the new model of QG which involves our formulation (in preparation)
Conclusions and future developments

- Solution of the quantum gravity problem: reconcile renormalizability and unitarity.
- The new formulation gives well defined amplitudes and unitarity equations, physically different from the previous formulations.
- Prediction of nonanalitycity of the amplitudes.
- Proof of unitarity beyond one loop.
- Study the physics of the new model of QG which involves our formulation (in preparation)
- Investigate the new possible phenomenology of fundamental interactions due to the new quantization prescription.