Particle physics and anomalies

Marco Piva

PhD course Università di Pisa

June 10, 2016

• Quantum theory + special relativity.

- Quantum theory + special relativity.
- Scattering processes and decays for elementary particles.

- Quantum theory + special relativity.
- Scattering processes and decays for elementary particles.
- Description of non elementary particles (mesons, baryons).

- Quantum theory + special relativity.
- Scattering processes and decays for elementary particles.
- Description of non elementary particles (mesons, baryons).
- Energy dependence of the parameters (renormalization).

- Quantum theory + special relativity.
- Scattering processes and decays for elementary particles.
- Description of non elementary particles (mesons, baryons).
- Energy dependence of the parameters (renormalization).
- Explain how particles get mass (Higgs mechanism).

- Quantum theory + special relativity.
- Scattering processes and decays for elementary particles.
- Description of non elementary particles (mesons, baryons).
- Energy dependence of the parameters (renormalization).
- Explain how particles get mass (Higgs mechanism).
- Theory of 3/4 fundamental interactions (standard model).

Outline

- 1 Field theory, symmetries and anomalies
- **2** The π^0 decay problem and the axial anomaly
- **3** Gauge anomalies and Adler-Bardeen theorem
- **4** Anomaly cancellation in the standard model

Classical field theory

Lagrangian density $\mathcal{L}(\phi, \partial \phi)$; continuus transformation $\mathcal{T} : \phi \to \phi'(\phi, \alpha)$.

If $\mathcal{T}: \mathcal{L} \to \mathcal{L}' = \mathcal{L} + \partial_{\mu} \mathcal{J}^{\mu}$, then \mathcal{T} is called a **symmetry** of \mathcal{L} .

If $\mathcal{T}: \mathcal{L} \to \mathcal{L}' = \mathcal{L} + \partial_{\mu} \mathcal{J}^{\mu}$, then \mathcal{T} is called a **symmetry** of \mathcal{L} .

Global symmetry: α does not depend on spacetime points.

If $\mathcal{T}: \mathcal{L} \to \mathcal{L}' = \mathcal{L} + \partial_{\mu} \mathcal{J}^{\mu}$, then \mathcal{T} is called a **symmetry** of \mathcal{L} .

Global symmetry: α does not depend on spacetime points. **Gauge symmetry**: α depends on spacetime points.

If $\mathcal{T}: \mathcal{L} \to \mathcal{L}' = \mathcal{L} + \partial_{\mu} \mathcal{J}^{\mu}$, then \mathcal{T} is called a **symmetry** of \mathcal{L} .

Global symmetry: α does not depend on spacetime points. **Gauge symmetry**: α depends on spacetime points.

Noether theorem

 \forall symmetry of $\mathcal{L},$ \exists a conserved density current J^{μ}

$$\partial_{\mu}J^{\mu} = 0. \tag{1}$$

Starting from a classical Lagrangian density \mathcal{L} . \downarrow Perturbation theory (Feynman diagrams).

Quantum field theory

Starting from a classical Lagrangian density \mathcal{L} . \downarrow Perturbation theory (Feynman diagrams). \downarrow Quantum corrections.

Quantum field theory

Starting from a classical Lagrangian density \mathcal{L} . \downarrow Perturbation theory (Feynman diagrams). \downarrow Quantum corrections.

Operator $\mathcal{O}(\phi, \partial \phi) \to \text{expectation value } \langle \mathcal{O}(\phi, \partial \phi) \rangle$.

Anomalies

Quantum corrections can give non zero contributions to the operator $\partial_{\mu}J^{\mu}$ such that

$$\langle \partial_{\mu} J^{\mu} \rangle \neq 0.$$
 (2)

Anomalies

Quantum corrections can give non zero contributions to the operator $\partial_{\mu}J^{\mu}$ such that

$$\langle \partial_{\mu} J^{\mu} \rangle \neq 0.$$
 (2)

We call $\mathcal{A} = \langle \partial_{\mu} J^{\mu} \rangle$ anomaly.

 π^{0} : neutral, P = -1, spin-0 meson.

 π^0 : neutral, P = -1, spin-0 meson. Meson: $q - \bar{q}$ bound state.

 π^0 : neutral, P = -1, spin-0 meson. Meson: $q - \bar{q}$ bound state.

Consider the electromagnetic decay

$$\pi^0 \to \gamma \gamma.$$
 (3)

 π^{0} : neutral, P = -1, spin-0 meson. Meson: $q - \bar{q}$ bound state.

Consider the electromagnetic decay

$$\pi^0 \to \gamma \gamma.$$
 (3)

In 1967, Sutherland and Veltman shown that: exact symmetries at quantum level $\Rightarrow \langle \gamma \gamma | \pi^0 \rangle \rightarrow 0$ for $m_{\pi} \rightarrow 0$.

 π^{0} : neutral, P = -1, spin-0 meson. Meson: $q - \bar{q}$ bound state.

Consider the electromagnetic decay

$$\pi^0 \to \gamma \gamma.$$
 (3)

In 1967, Sutherland and Veltman shown that: exact symmetries at quantum level $\Rightarrow \langle \gamma \gamma | \pi^0 \rangle \rightarrow 0$ for $m_{\pi} \rightarrow 0$. The only operator is $C \epsilon_{\mu\nu\rho\sigma} F^{\mu\nu} F^{\rho\sigma}$, symmetry $\Rightarrow C = 0$.

 π^{0} : neutral, P = -1, spin-0 meson. Meson: $q - \bar{q}$ bound state.

Consider the electromagnetic decay

$$\pi^0 \to \gamma \gamma.$$
 (3)

In 1967, Sutherland and Veltman shown that: exact symmetries at quantum level $\Rightarrow \langle \gamma \gamma | \pi^0 \rangle \rightarrow 0$ for $m_{\pi} \rightarrow 0$. The only operator is $C \epsilon_{\mu\nu\rho\sigma} F^{\mu\nu} F^{\rho\sigma}$, symmetry $\Rightarrow C = 0$.

Observed decay rate $\Gamma_{\rm obs}^{\pi\gamma\gamma} = (1, 19 \pm 0, 08) \times 10^{16} s^{-1}$ (Corresponding to ~ 98% of the decays).

 π^{0} : neutral, P = -1, spin-0 meson. Meson: $q - \bar{q}$ bound state.

Consider the electromagnetic decay

$$\pi^0 \to \gamma \gamma.$$
 (3)

In 1967, Sutherland and Veltman shown that: exact symmetries at quantum level $\Rightarrow \langle \gamma \gamma | \pi^0 \rangle \rightarrow 0$ for $m_{\pi} \rightarrow 0$. The only operator is $C \epsilon_{\mu\nu\rho\sigma} F^{\mu\nu} F^{\rho\sigma}$, symmetry $\Rightarrow C = 0$.

Observed decay rate $\Gamma_{\rm obs}^{\pi\gamma\gamma} = (1, 19 \pm 0, 08) \times 10^{16} s^{-1}$ (Corresponding to ~ 98% of the decays).

Solution: axial anomaly.

$$\mathcal{L}_{QED} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + i\bar{\psi}\partial\!\!\!/\psi - e\bar{\psi}A\!\!\!/\psi,$$

$$\mathcal{L}_{QED} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + i\bar{\psi}\partial\!\!\!/\psi - e\bar{\psi}A\!\!\!/\psi,$$

invariant under a global U(1) symmetry

$$\psi \to e^{i\alpha\gamma_5}\psi, \qquad \bar{\psi} \to \bar{\psi}e^{i\alpha\gamma_5}.$$

$$\mathcal{L}_{QED} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + i\bar{\psi}\partial\!\!\!/\psi - e\bar{\psi}A\!\!\!/\psi,$$

invariant under a global U(1) symmetry

$$\psi \to e^{i\alpha\gamma_5}\psi, \qquad \bar{\psi} \to \bar{\psi}e^{i\alpha\gamma_5}.$$

Adler-Bell-Jackiw Classical level: $\partial_{\mu}J_{5}^{\mu} = 0$. Quantum level: $\langle \partial_{\mu}J_{5}^{\mu} \rangle \neq 0$.

$$\mathcal{L}_{QED} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + i\bar{\psi}\partial\!\!\!/\psi - e\bar{\psi}A\!\!\!/\psi,$$

invariant under a global U(1) symmetry

$$\psi \to e^{i\alpha\gamma_5}\psi, \qquad \bar\psi \to \bar\psi e^{i\alpha\gamma_5}$$

Adler-Bell-Jackiw Classical level: $\partial_{\mu}J_{5}^{\mu} = 0$. Quantum level: $\langle \partial_{\mu}J_{5}^{\mu} \rangle \neq 0$.

Quantum correction due to the diagram

ABJ anomaly, N_c colors: $\mathcal{A} = \langle \partial_{\mu} J_5^{\mu} \rangle_{\text{one-loop}} = \frac{N_c e^2}{48\pi^2} \epsilon_{\mu\nu\rho\sigma} F^{\mu\nu} F^{\rho\sigma}$.

ABJ anomaly, N_c colors: $\mathcal{A} = \langle \partial_{\mu} J_5^{\mu} \rangle_{\text{one-loop}} = \frac{N_c e^2}{48\pi^2} \epsilon_{\mu\nu\rho\sigma} F^{\mu\nu} F^{\rho\sigma}$.

 \mathcal{A} has a physical meaning: $\partial_{\mu}J_{5}^{\mu}$ composite operator with the same quantum numbers of π^{0} .

₩

Processes involving π^0 can be described by correlation functions involving $\partial_{\mu} J_5^{\mu}$. ABJ anomaly, N_c colors: $\mathcal{A} = \langle \partial_{\mu} J_5^{\mu} \rangle_{\text{one-loop}} = \frac{N_c e^2}{48\pi^2} \epsilon_{\mu\nu\rho\sigma} F^{\mu\nu} F^{\rho\sigma}$.

 \mathcal{A} has a physical meaning: $\partial_{\mu}J_{5}^{\mu}$ composite operator with the same quantum numbers of π^{0} .

∜

Processes involving π^0 can be described by correlation functions involving $\partial_{\mu} J_5^{\mu}$.

$$\Gamma_{ABJ}^{\pi\gamma\gamma} = \left(\frac{N_c}{3}\right)^2 \times 1, 11 \times 10^{16} s^{-1}, \qquad (4)$$

$$\Gamma_{\rm obs}^{\pi\gamma\gamma} = (1, 19 \pm 0, 08) \times 10^{16} s^{-1}.$$
 (5)

 $N_c = 3$ gives a result in agreement with the experiments.

Global symmetries can be anomalous, leading to physical consequences.

Global symmetries can be anomalous, leading to physical consequences. Gauge symmetries are used to remove unphysical d.o.f.

If a gauge symmetry were anomalous, then the theory would be **non-unitary**.

Global symmetries can be anomalous, leading to physical consequences. Gauge symmetries are used to remove unphysical d.o.f.

If a gauge symmetry were anomalous, then the theory would be **non-unitary**.

We have a consistency condition for gauge theories: All gauge anomalies must cancel!

Adler-Bardeen theorem

Higher order?

$$\langle \partial_{\mu} J_{5}^{\mu} \rangle = \frac{N_{c} e^{2}}{48\pi^{2}} \epsilon_{\mu\nu\rho\sigma} F^{\mu\nu} F^{\rho\sigma} + \dots$$

Adler-Bardeen theorem

Higher order?

$$\langle \partial_{\mu} J_{5}^{\mu} \rangle = \frac{N_{c} e^{2}}{48\pi^{2}} \epsilon_{\mu\nu\rho\sigma} F^{\mu\nu} F^{\rho\sigma} + \dots$$

Theorem

 The ABJ axial anomaly is one-loop exact (Adler-Bardeen, 1969);

Adler-Bardeen theorem

Higher order?

$$\langle \partial_{\mu} J_{5}^{\mu} \rangle = \frac{N_{c} e^{2}}{48\pi^{2}} \epsilon_{\mu\nu\rho\sigma} F^{\mu\nu} F^{\rho\sigma} + \dots$$

Theorem

- The ABJ axial anomaly is one-loop exact (Adler-Bardeen, 1969);
- II) If gauge anomalies vanish at one-loop, they vanish to all orders.

Anomaly cancellation in the standard model

Standard model gauge group $G = SU(3)_c \times SU(2)_L \times U(1)_Y$.

Anomaly cancellation in the standard model

Standard model gauge group $G = SU(3)_c \times SU(2)_L \times U(1)_Y$.

Cancellations between quark and leptons are necessary.

Anomaly cancellation in the standard model

Standard model gauge group $G = SU(3)_c \times SU(2)_L \times U(1)_Y$.

Cancellations between quark and leptons are necessary.

All one-loop anomalies cancel: the standard model is anomaly free!

12 / 13

12 / 13

12 / 13

Anomalies are an important tool in quantum field theory.

• Solve the theoretical problem of π^0 decay.

Anomalies are an important tool in quantum field theory.

• Solve the theoretical problem of π^0 decay.

• Provide a check for the consistency of a theory .

Anomalies are an important tool in quantum field theory.

• Solve the theoretical problem of π^0 decay.

• Provide a check for the consistency of a theory .

• Predictivity: constraints on particle content in the standard model.