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The success of quantum field theory

• Quantum theory + special relativity.

• Scattering processes and decays for elementary particles.
• Description of non elementary particles (mesons, baryons).
• Energy dependence of the parameters (renormalization).
• Explain how particles get mass (Higgs mechanism).
• Theory of 3/4 fundamental interactions (standard model).
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Classical field theory

Lagrangian density L(φ, ∂φ);
continous tranformation T : φ→ φ′(φ, α).

If T : L → L′ = L+ ∂µJ µ, then T is called a symmetry of L.

Global symmetry: α does not depend on spacetime points.
Gauge symmetry: α depends on spacetime points.

Noether theorem
∀ symmetry of L, ∃ a conserved density current Jµ

∂µJ
µ = 0. (1)
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Quantum field theory

Starting from a classical Lagrangian density L.
↓

Perturbation theory (Feynman diagrams).

↓
Quantum corrections.

Operator O(φ, ∂φ) → expectation value 〈O(φ, ∂φ)〉 .
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Anomalies

Quantum corrections can give non zero contributions to the
operator ∂µJµ such that

〈∂µJµ〉 6= 0. (2)

We call A = 〈∂µJµ〉 anomaly.
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The π0 decay problem

π0π0π0: neutral, P = −1, spin-0 meson.

Meson: q− q̄ bound state.

Consider the electromagnetic decay

π0 → γγ. (3)

In 1967, Sutherland and Veltman shown that:
exact symmetries at quantum level ⇒

〈
γγ|π0

〉
→ 0 for mπ → 0.

The only operator is CεµνρσFµνF ρσ, symmetry ⇒ C = 0.

Observed decay rate Γπγγobs = (1, 19± 0, 08)× 1016s−1

(Corresponding to ∼ 98% of the decays).

Solution: axial anomaly.
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Axial anomaly

LQED = −1
4FµνF

µν + iψ̄ /∂ψ − eψ̄ /Aψ,

invariant under a global U(1) symmetry

ψ → eiαγ5ψ, ψ̄ → ψ̄eiαγ5 .

Adler-Bell-Jackiw
Classical level: ∂µJ

µ
5 = 0. Quantum level: 〈∂µJµ5 〉 6= 0.

Quantum correction due to the diagram
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ABJ anomaly, Nc colors: A = 〈∂µJµ5 〉one−loop = Nce2

48π2 εµνρσF
µνF ρσ.

A has a physical meaning:
∂µJ

µ
5 composite operator with the same quantum numbers of π0.

⇓

Processes involving π0 can be described by correlation functions
involving ∂µJ

µ
5 .

ΓπγγABJ =

(
Nc

3

)2

× 1, 11× 1016s−1, (4)

Γπγγobs = (1, 19± 0, 08)× 1016s−1. (5)

Nc = 3 gives a result in agreement with the experiments.
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Gauge anomalies

Global symmetries can be anomalous, leading to physical
consequences.

Gauge symmetries are used to remove unphysical d.o.f.

If a gauge symmetry were anomalous, then the theory would be
non-unitary.

We have a consistency condition for gauge theories:
All gauge anomalies must cancel!
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Adler-Bardeen theorem

Higher order?

〈∂µJµ5 〉 =
Nce

2

48π2
εµνρσF

µνF ρσ + . . .

Theorem

I) The ABJ axial anomaly is one-loop exact (Adler-Bardeen,
1969);

II) If gauge anomalies vanish at one-loop, they vanish to all
orders.
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Anomaly cancellation in the standard model

Standard model gauge group G = SU(3)c × SU(2)L × U(1)Y .

Cancellations between quark and leptons are necessary.

All one-loop anomalies cancel:
the standard model is anomaly free!
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3 · 2 ·
(
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)3 − 3 ·
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Conclusions

Anomalies are an important tool in quantum field theory.

• Solve the theoretical problem of π0 decay.

• Provide a check for the consistency of a theory .

• Predictivity: constraints on particle content in the standard
model.
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