Intersubband Polariton

Francesco Pisani

Outline

- Introduction
 - Surface Plasmon
 - Intersubband transition
 - Intersubband Polaritons
- Polariton Emission
- Improving the polariton generation
 - High Q-factor cavities & parabolic QWs
 - Graphene grating
 - Critical Coupling
- Magic Windows

PARTNERS Y PUBLICATIONS

Consiglio Nazionale delle Ricerche> (CNR) Institutes

Tematys

The Foundation for Research and Technology – Hellas (FORTH)

The Laboratory Pierre Aigrain (CNRS-LPA)

University of Leeds – School of Electronic and Electrical Engineering

University of Regensburg – The Ultrafast quantum dynamics and photonics Group

Université Paris-Sud – Centre for Nanoscience and Nanotechnology (C2N)

Università di Pisa – Dipartimento di Fisica

Mid- and far-IR optoelectronic devices based on Bose-Einstein condensation

Intersubband Polariton Laser

Polaritons

are **bosonic quasiparticles** resulting from strong coupling of electromagnetic waves with an electric or magnetic dipole-carrying excitation.

Polaritons

are **bosonic quasiparticles** resulting from strong coupling of electromagnetic waves with an electric or magnetic dipole-carrying excitation.

• Photonic resonance: Surface Plasmon

• Material resonance: Intersubband transitions

Surface Plasmons

are collective oscillation of electrons in the metal, driven by an electromagnetic wave.

Surface Plasmons can be excited thourgh a grating coupler

The dispersion folds in the F.B.Z

Surface Plasmons can be excited through a grating coupler

Intersubband Transitions

The transition frequency can be tuned with the QW thickness.

The absorbed polarization is in the growth direction.

The strong coupling between the two resonances generates the Intersubband Polariton

Incidence angle (degree)

The strong coupling between the two resonances generates the intersubband Polariton

Incidence angle (degree)

Polariton Emission

Polariton Emission

- Metallic back for better field distribution
- SP resonance tailored by the grating pitch
- 35 QWs with high doping
- LO-phonon energy 36.3 meV

Reflectance

Experimental Setup

Experimental Setup

Experimental Setup

Pumping angle dependence

Detection angle dependence

Temperature dependence

- Maximum at the lowest temperature
- Nitrogen cooled
- Helium?

Pumping power dependence

- Maximum at the highest power
- Emission "linear" with power
- No lasing yet!

Improving the polariton generation

1

0.5

0

-0.5

-1

-3

U/E_

→ X

The levels in a PQW are equally spaced in energy

- Higher doping
- Working at room temperature
- Lower frequencies

Objective: increase the coupling strength and Q-factor

$$g = \frac{\Omega_R}{\omega_c}$$
 $g \propto \sqrt{\frac{n_{QW}}{\omega_c V}}$ $Q = \Omega_R / \bar{\gamma}$

Reflectance

Decreasing the losses to increase the Q-factor

Decreasing the losses to increase the Q-factor

Higher polariton lifetime

Graphene for high confinement & tunable resonance

Graphene for high confinement & tunable resonance

The polariton generation can be enhanced tuning the QW & graphene doping

Pitch [μ m]

The polariton generation can be enhanced tuning the QW & graphene doping

Fitting the reflectance to characterize the resonance

Fitting the right parameters to maximize the Q-factor

Too easy with the simulations

•
$$E_F \sim 0.4 \ eV$$

• $\mu = 20000 \frac{cm^2}{Vs}$
• $n_{dop} \sim 1 \times 10^{12} cm^{-2}$

With the critical coupling we can lower the requirements

$$h_c = \frac{\lambda}{4n_D}$$

With the critical coupling we can lower the requirements

Magic windows

The magic window projects a specific image

The **chinese magic mirror** projects the pattern engraved on the back

Bumps on the surface deflect the light

From the image to the window

Image to project

Testing the lens with ray tracing

100

Testing the lens with ray tracing

100

3D-printed windows

We can use the windows to adjust distortions

Laser Writer lithography: firsts tests towards the micrometer range

Conclusions

- Polariton Emission
 - Preliminary results
 - Future directions

• Improving the polariton generation

- High Q-factor cavities & parabolic QWs
- Graphene grating
- Critical Coupling

Magic Windows

- Printed Windows
- Laser Writer

Back up

The transition frequency can be tuned with the QW thickness

Three signals at the same time (UHF lock-in)

Boxcars

Demod 1

Demod 2

Filter order 8

Filter order 4

A gold grating can be taylored on the PQWs resonance

