

Università di Pisa

Medical Physics: a historical perspective

Alessandro Pilleri alessandro.pilleri@df.unipi.it

Introduction

Introduction

Before Renaissance

Deinesses

latrophysics

18th Century

19th Century

20th Century

X-rays Radiology

Radioactivity
Nuclear Medicine

Major Revolutions

Nobel Prizes

Conclusions

References

What is Medical Physics?

- Medical Physics emerged as a distinct scientific discipline early in the 20th century in response to the growing use of ionising radiation in diagnosis and treatment.
- The relation between Physics and Medicine has a much longer history [Keevil, 2012, Duck, 2014]

Before Reinassance

Before Benaissance

Reinassand

latrophysics

18th Century

19th Century

20th Century

X-rays

Radiology Radioactivity

Nuclear Medicine
Major Revolutions

Nobel Prizes

Conclusions

References

Hippocrates (circa 460-377 BC) developed a technique that was actually a form of thermal imaging.

Figure: Reproduction of Hippocratic thermograpy [Otsuka and Togawa, 1997]

- Samothrace (circa 200 AD): magnetic rings to treat arthritis
- Alhazen (circa 1000 AD) describes the physics of vision

Reinassance

Introduction
Before Renaissance

Reinassance

latrophysics

18th Century

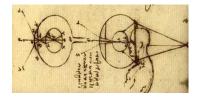
19th Century

20th Century

X-ravs

Radiology Radioactivity

Nuclear Medicine


Major Revolutions

Nobel Prizes

Conclusions

References

Leonardo da vinci (1452-1519): first medical physicist, developed the principle of eye contact lenses.

- Heart as a pump (Vasalius (1514-64) and blood circulation Harvey (1578-1657)
- René Descartes (1596-1650) Traité de l'Homme et de la formation du foetus

latrophysics

Introduction

Before Renaissance

Reinassance

latrophysics

iatropriysit

18th Century

19th Century

20th Century

X-rays
Radiology
Radioactivity

Nuclear Medicine Major Revolutions

Nobel Prizes

Conclusions

References

latrophysics was a school of medicine which, in the 17th century, attempted to explain physiological phenomena in mechanical terms.

- particles: Anton von Leeuwenhoeck and Robert Hooke studied the cells
- mechanics: Giovanni Borelli studied the human body mechanisms.
- fluids: bloods circulation, arteries, veins and vessels. (Marcello Malpighi).
- ▶ temperature: Galileo and first termomether (Santorio Santorio ~1600).

18th Century

Introduction
Before Renaissance
Reinassance
latrophysics

18th Century

19th Century

20th Century
X-rays
Radiology
Radioactivity
Nuclear Medicine

Major Revolutions
Nobel Prizes

Conclusions

- Luigi Galvani (1737-98) and Alessandro Volta (1745-1827) demonstrated that electricity generates muscolar activity
- →New discipline: electrophysiology.
- Research about magnetism: the deseases can be treated by application of magnets to correct the magnetic vital fluid distribution.
- Daniel Bernoulli (circa 1720) investigated the flow of fluids: understanding the relationship between the speed at which blood flows and its pressure. To investigate, Bernoulli experimented by puncturing the wall of a pipe with an open ended straw and noted that the height to which the fluid rose was related to the fluid's pressure in the pipe.

19th Century

Introduction
Before Renaissance
Reinassance
latrophysics
18th Century

19th Century

20th Century
X-rays
Radiology
Radioactivity
Nuclear Medicine
Major Revolutions

Nobel Prizes

Conclusions

- ► Thomas Young (1773-1829): physiology of vision, accomodation of the eye and astigmatism.
- Hermann von Helmotz (1821-94): invented the ophthalmscope and measured the speed of signals in nerves.
- ► Adolph Fick (1829-1901): published Medizinische Physik → stethoscope.
- ► Michal Faraday (1791-1867): lectures at St George's Hospital in London.

First Revolution

Introduction

Before Renaissance

Reinassance

latrophysics

18th Century

19th Century

20th Century

X-ravs

Radiology Radioactivity

Nuclear Medicine

Major Revolutions

Nobel Prizes

Conclusions

References

X-rays

Radioactivity

X-rays

Before Renaissance
Reinassance
latrophysics

18th Century

19th Century 20th Century X-rays

X-rays
Radiology
Radioactivity
Nuclear Medicine
Major Revolutions

Nobel Prizes

Conclusions
References

- Wilhelm Röntgen (1845-1906) discovered X-rays, Nov 8, 1895.
- March 1896: radiography was used in the battlefield
- April 1896: medical imaging had its first scientific journal: Archives of Clinical Skiagraphy.
- July 1986: therapeutic use of x-rays to treat stomach cancer.
- ▶ 1897: world's first radiological society in London
- 1898: Röntgen Society estabilished a Commitee on X-rays Injuries.
- ► →New discipline: Radiology

Radiology

Before Renaissance

Reinassance

latrophysics

18th Century

19th Century

20th Century

X-ravs

Radiology Radioactivity

Nuclear Medicine Major Revolutions

Nobel Prizes

Conclusions

Figure: Megavolt x-ray tube -St Bartholomew Hospital 1937

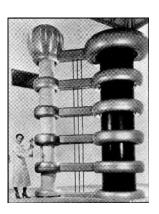


Figure: Megavolt x-ray machine -Los Angeles Institute of Radiology 1938

Radioactivity

Introduction
Before Renaissance
Reinassance
latrophysics
18th Century

19th Century 20th Century X-rays Radiology

Radioactivity
Nuclear Medicine
Major Revolutions

Nobel Prizes

Conclusions

- ► Henry Bequerel (1852-1908) discovered natural radioactivity (1896) and Pierre and Marie Curie (1859-1906, 1867-1934) discovered radium and radioactive isotopes → brachyteraphy and radium teletherapy.
- Frederic Joliot and Irene Curie in 1934 produced the first artificial radionuclide (³⁰P)
 - \longrightarrow George de Hevesy reported the incorporation of (^{30}P) phosphate in bone (birth of radiotracers).
- ► Ernest Lawrence develoed the cyclotron (~1930) and Enrico Fermi (1942) demonstrated the first self-sustained nuclear chain reaction
 - → stable production of radioisotopes
- ► Carl D. Anderson discovered the positron (1932) and E. Fermi explained the β^+ decay
 - $\longrightarrow \beta^+$ radiotracers
- ► → New discipline: Nuclear Medicine

Nuclear Medicine

Before Renaissance **latrophysics**

18th Century

19th Century

X-ravs Radiology **Radioactivity** Nuclear Medicine

Major Revolutions

Nobel Prizes

Conclusions References

clotron (1939) 20th Century First medical cyclotron: Washington University, St. Louis

(1941)

► First medicine radioisotopes: ¹³¹I. It was used for thy-

roid investigation and it was produced at the Berkley cy-

- Benedict Cassen invented the rectilinear scanner (1951) [Blahd, 2000]
- \triangleright β^+ emitter used to trace red blood cells (1951)
 - ---- scintillation material replace Geiger counters
- ► Hal Anger (11920-2005) invented the gamma gamera (1958)
 - →better investigation of the distribution of radiotracers.

Major Revolutions

Before Renaissance
Reinassance

latrophysics 18th Century

19th Century

0011-0--1

20th Century X-ravs

Radiology
Radioactivity
Nuclear Medicine

Major Revolutions

Nobel Prizes

Conclusions

- Ultrasound Imaging
- Computerized Tomography
- Single Photon Emission Computed Tomography (SPECT)
- Positron Emission Tomography (PET)
- Nuclear Magnetic Resonance (supercontucting magnets)
 —>non invasive technique for morphological and functional imaging
- Lasers
 - →optical scalpel
 - →eye surgery
 - ---dermatology

List of Nobel Prizes

Before Renaissance

Reinassance

latrophysics 18th Century

19th Century

20th Century

V -----

Radiology Radioactivity

Nuclear Medicine

Major Revolutions

Nobel Prizes

Conclusions

Conclusions

References

Physics

- 1901 Röngten
- 1903 Bequerel, Pierre and Maire Curie
- 1915 Bragg
- 1939 Lawrence
- 1951 Cockroft-Walton
- 1952 Block and Purcell

Physiology and Medicine

- 1962 Crick: DNA Discovery
- 1963 Hodgkin-Huxley: Nerve pulses
- 1969 Dellbruck; replication of viruses
- 1979 Cornack-Hounsfield: CT development
- 2003 Mansfield: MRI development

Conclusions

Introduction
Before Renaissance

Reinassance

latrophysics

18th Century

19th Century

20th Century

X-ravs

Radiology Radioactivity

Nuclear Medicine

Major Revolutions

Nobel Prizes

Conclusions

References

Physics has made a lot of contribution to Medicine

- New disciplines
- Measurements
- Diagnosis and treatment
- Medical Physicist

Let's see what comes next!

References

Introduction

Before Renaissance

Reinassance

latrophysics

18th Century

19th Century

20th Century

X-ravs

Radiology Radioactivity

Nuclear Medicine

Major Revolutions

Nobel Prizes

Conclusions

References

[Blahd, 2000] Blahd, W. H. (2000).

Benedict cassen the father of body organ imaging.

Cancer Biotherapy and Radiopharmaceuticals, 15(5):423-429.

[Duck, 2014] Duck, F. A. (2014).

The origins of medical physics. *Physica Medica*, 30(4):397–402.

[Keevil, 2012] Keevil, S. F. (2012).

Physics and medicine: a historical perspective.

The Lancet, 379(9825):1517-1524.

[Otsuka and Togawa, 1997] Otsuka, K. and Togawa, T. (1997).

Hippocratic thermography.

Physiological Measurement, 18(3):227.