University of Pisa Department of Physics PhD Course in Medical Physics

Academic Year 2017/2018

Normalization of the PET scanner IRIS

PhD Student: Michele Piccinno Supervisor: Prof. Nicola Belcari

Contents

PET-CT

- The scanner
- The Image Reconstruction

2 NORMALIZATION

- Theory
- Simulation

3 NEXT STEPS

The scanner The Image Reconstruction

PET-CT

- The scanner
- The Image Reconstruction

2 NORMALIZATION

- Theory
- Simulation

3 NEXT STEPS

PET-CT

• The scanner

• The Image Reconstruction

2 NORMALIZATION

- Theory
- Simulation

INEXT STEPS

The PET-CT (1)

What is PET?

- Nuclear medicine scan, functional imaging technique
- Non-invasive, but it involves exposure to ionizing radiation
- Usage of radioactive isotopes: β^+ -emitter

The scanner The Image Reconstruction

The PET-CT (2)

ΡΕΤ

- emission
- physiological information

СΤ

- transmission
- morphological information
- attenuation coefficient

(日) (部) (E) (E) (E)

 β^+

- emission

Common isotopes and their half-life in minutes

イロン イロン イヨン イヨン

¹¹ C	20.3
¹³ N	9.98
¹⁵ 0	2.05
¹⁸ F	110
²² Na	2.6 y

э

The scanner The Image Reconstruction

IRIS

メロト メポト メヨト ノヨ

Module	System	Dataset
Crystal LYSO:Ce	Modules 16 (8 x 2)	$LORs > 2 \cdot 10^7$
Crystal size (mm3)	No. of crystals $> 10^5$	Coincidence 1 vs 6
1.6 x 1.6 x 12	Inner diameter 110.8 mm	No. pairs 48
Crystal pitch 1.69 mm	Gantry aperture 100 mm	Window (ns) 6,2
No. of Cr. 702	Axial FOV 95 mm	(2τ)
	Transaxial FOV 80 mm	

PET-CT

- The scanner
- The Image Reconstruction

2 NORMALIZATION

- Theory
- Simulation

The scanner The Image Reconstruction

From projection data to image

Two way to reconstruct image:

- analytic
 - deterministic
 - FBP

- iterative
 - stochastic
 - MLEM, OSEM
 - $\bullet \ y = Pf$

The scanner The Image Reconstruction

MLEM and OSEM (1)

MLEM (Maximum Likelihood Expectation Maximization)

$$f_{j}^{(k+1)} = \frac{f_{j}^{(k)}}{\sum_{i} p_{ij}} \sum_{i} p_{ij} \frac{y_{i}}{\sum_{i} p_{ij} f_{i}^{(k)}}$$
(1)

where

- f_i^k is the radiotracer activity in voxel j at k-th iteration;
- y; represents the i-th pair of detectors (or LOR);
- p_{ii} contains the probability of detecting an emission from voxel site j in LOR i.

11 / 25

э

MLEM and OSEM (2)

The MLEM (or OSEM) cycle can be summarized in the following steps:

- forward-project current image values f_i^(k) into projection domain;
- compare projection with measured data y_i, obtaining a correction factor;
- Southastic the correction factor into image domain for each LOR;
- update current image estimate weighted by p_{ij} .

PET-CT Theory Simulation NORMALIZATION NEXT STEPS

- The scanner
- The Image Reconstruction

2 NORMALIZATION

- Theory
- Simulation

1 PET-CT

- The scanner
- The Image Reconstruction

Simulation

Problems

In a PET scanner there are several sources of error in the quantification process, like:

- scattered photons
- random coincidences
- differences in sensitivity

Normalization in PET is the process of ensuring that all LORs joining detectors in coincidence have the right effective sensitivity.

Normalization

Direct

- ratio between the ideal number of coincidences and the actually measured one
- large number of counts for acceptable statical accuracy
- scatter for some phantoms

Component-based

- divides the normalization factors into detector efficiency and spatial distortion correction
- normalization factors are computed by averaging over multiple LORs
- different models for the normalization factor

< ロ > < 同 > < 回 > < 回 >

The Phantom

Planar phantom: 110 x 95 x 2 mm³ of 18 F

1 PET-CT

- The scanner
- The Image Reconstruction

Simulation

PET-CT NORMALIZATION NEXT STEPS Simulation

GATE 7.1

GATE: Geant4 Application for Tomographic Emission

- geometry
- o physics
- digitizer
- phantom with activity

э

イロン イロン イヨン イヨン

New IRIS

IRIS with planar phantom without 4 modules

3

・ロト ・回ト ・ヨト ・ヨト

Quality Phantom NEMA-NU4

Not normalized

Normalized

(日) (部) (E) (E) (E)

Standard mesurements: Uniformity

Not	norma	ized

Mean:	$5\cdot 10^4$
Max:	$6\cdot 10^4$
Min:	$4\cdot 10^4$
%STD:	6

Normalized

Mean:	$1.5 \cdot 10^{4}$
Max:	$1.7\cdot 10^4$
Min:	$1.3\cdot 10^4$
%STD:	5

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

æ

NORMALIZATION NEXT STEPS

PET-CT

Theory Simulation

		1mm	1 2mr	n 3mr	n	4mm	ı	5mm
Not normalize	d RC	0.13	0.62	2 0.8	9	0.89		0.90
	%STD	9	9	7		8		7
		1		Ţ				
		1mm	2mm	3mm	4	mm	5	mm
Normalized	RC	0.13	0.63	0.90	0).92	().92
	%STD	8	8	6		6		6

æ

・ロト ・四ト ・ヨト ・ヨト

1 PET-CT

- The scanner
- The Image Reconstruction

2 NORMALIZATION

- Theory
- Simulation

NEXT STEPS

- Use different phantoms to normalize the LORs and study the differences in the outcome to understand which one works better with IRIS
- Investigate different normalization techniques, in particular focusing on the differences between direct and component-based normalization
- Apply the results to actual preclinical images to increase the quantification of the scanner outcome

Thank you for your attention

MLEM and OSEM: some equations

The detection of each photon pair is Poissonian:

$$\rho(\mathbf{y}|\mathbf{f}) = \prod_{i} \mathbf{p}(\mathbf{y}_{i}|\mathbf{f}) = \prod_{i} e^{-\hat{\mathbf{y}}_{i}} \frac{\hat{\mathbf{y}}_{i}}{\mathbf{y}_{i}!}$$
(2)

where: $\hat{y}_i = E[y_i] = \sum_j E[c_{ij}]$

$$L(\mathbf{y}|\mathbf{f}) = \sum_{i} \sum_{j} \mathbf{c}_{ij} \mathbf{ln} \ \mathbf{p}_{ij} \mathbf{f}_{i} - \mathbf{p}_{ij} \mathbf{f}_{i}$$
(3)

$$\frac{\partial E[L(\mathbf{y}|\mathbf{f})|\mathbf{y};\mathbf{f}^{(k)}]}{\partial f_i} = f_j^{(k)} \sum_i p_{ij} \frac{y_i}{\sum_l p_{il} f_l^{(k)}} \frac{p_{ij}}{p_{ij} f_j} - \sum_i p_{ij} = 0 \qquad (4)$$

