Università di Pisa Pre-tesi di dottorato XXVIII ciclo

Controlled dose irradiation with pulsed beams of different ion species

Author: Lara Palla

Supervisors: Prof.ssa Valeria Rosso Dott. Francesco Taccetti

23/10/2014

Overview

- **Thermoluminescence (TL)**
- **TL dating principles**
- The 3 MV Tandem accelerator system
- The pulsed beam line DEFEL
- **Detector system setup**
- Preliminary measurements results

Thermoluminescence

- a) Excitation of a valence electron by ionizing radiation
- a') prompt recombination with a hole in the valence band
- b,c) trapping in a metastable level near conduction band
- d) trapping of a hole in a localized level near the valence band

- a, b) Recombination with a hole at luminescent centre
- c) Recombination with a hole in the valence band

Duller, G A T 2008 Luminescence Dating:guidelines on using luminescence dating inarchaeology.Swindon:English Heritage

Glow curve

Thermoluminescence: applications

Medical sciences, radiation **Archaeology: TL dating** dosimetry Different kinds of dosimetric materials Natural TL materials present in clay and soil: quartzs, feldspars LiF:Mg,Ti, LiF:Mg,Cu,P Tissue equivalent Li₂B₄O₇:Mn CaSO₄:Dy $Al_2O_3:C$ CaF₂:Mn 20 9 9 9 9 0 9 TLDs are available in various forms: powder, chips, rods and ribbons

Thermoluminescence Dating

Dating of inorganic materials (ceramics, pottery, sediments, lava, meteorites...) Autyhentication of works of art

Dating range: 10-500000 years . Clock is set at time t₀ (when all traps were emptied)

Thermoluminescence Dating

Main contribution: $\boldsymbol{\alpha}$ radiation from within the sample

Controlled dose irradiation

The mechanisms at the basis of TL are not yet well known

The properties of TL materials are still under study: TL efficiency for different incident particles (particular interest in α particles for TL dating), radiation damage, dose rate effects.

Very low beam currents

Example: quartz sample of 1 cm² \rightarrow 2 Gy with 5 MeV α particles \rightarrow 10⁷ cm⁻² \rightarrow 1 pA for 1s

The pulsed beam line DEFEL

Bunch multiplicity: 1 – few hundreds

Bunch frequency: single pulse-1 kHz

The accelerator system

The accelerator system: ion sources

The accelerator system: the acceleration

The accelerator system: the acceleration

*DEFEL: the creation of ion bunches

*DEFEL: the creation of ion bunches

*DEFEL: the creation of ion bunches

DEFEL: bunch characteristics

The bunch multiplicity follows a Poisson statistics

The detector system: configurations

Counting of the ions inside the DEFEL bunches that hit the sample

The detector system: the MCP

Model F9892-12 Effective area diam. 4 cm Channel diam. 6 μm PHR 150 %

Model F4655-12

Effective area diam. 1.5 cm Channel diam. 12 μm PHR 50 %

Model F2223-21SH

Effective area diam. 3 cm Channel diam. 12 μm Hole diam. 4 mm PHR 150 %

Detection efficiency for electrons

The detector system: electronics

Data stored on disk (binary files) for offline analysis

12 bit resolution250 MS/sInput range 2Vpp max

The detector system: electronics

Preliminary measurements with different ions

*Preliminary measurements with different ions.

*Preliminary measurements with different ions.

*Preliminary measurements with different ions

Detector system: calibration

MCP Integrals as a function of Si Integrals

Detector system: calibration

Calibration curves

Detector system: calibration results

+2.8%

				_
10 MeV ${}^{16}O^{4+}$	μSi	μMCP	$\frac{(\mu MCP - \mu Si)}{\mu Si}$	
evts 0-2500(CAL)	$4.46(21) \pm 0.05$	$4.46(24) \pm 0.08$	+0.007%	•
evts 2500-5000	3.76 ± 0.05	3.79 ± 0.07	+0.8%	
evts 5000-7500	3.73 ± 0.05	3.71 ± 0.07	-0.5%	
evts 7500-10000	3.58 ± 0.05	3.54 ± 0.06	-1.1%	
10 MeV ${}^{12}C^{3+}$				•
evts 0-2500(CAL)	$4.38(0) \pm 0.05$	$4.37(8) \pm 0.095$	-0.05%	
evts 2500-5000	$4.39(3) \pm 0.05$	$4.3(91) \pm 0.1$	-0.035%	
evts 5000-7500	$4.17(2) \pm 0.05$	$4.1(96) \pm 0.1$	+0.6%	
evts 7500-10000	$4.09(8) \pm 0.05$	$4.0(76) \pm 0.1$	-0.54%	
TEST	$1.64(7) \pm 0.04$	$1.3(68) \pm 0.1$	-17%	_
7.5 MeV $^7Li^{2+}$ (data 1)				
evts 0-2500(CAL)	$1.95(1) \pm 0.03$	$1.96(5) \pm 0.05$	+0.7%	
evts 2500-5000	2.00 ± 0.02	2.04 ± 0.05	+2%	
evts 5000-7500	1.99 ± 0.02	$2.03(6) \pm 0.05$	+2%	
evts 7500-10000	1.88 ± 0.02	$1.93(0) \pm 0.05$	+2.7%	
7.5 MeV ⁷ Li ²⁺ (data 2)				•
evts 0-2500(CAL)	$8.81(3) \pm 0.07$	$8.8(53) \pm 0.1$	+0.45%	
evts 2500-5000	$8.72(6) \pm 0.07$	$8.8(65) \pm 0.1$	+1.6%	
evts 5000-7500	$8.63(8) \pm 0.07$	$8.6(37) \pm 0.1$	-0.013%	
evts 7500-10000	$8.32(8) \pm 0.06$	$8.4(48) \pm 0.1$	+1.4%	-
$2 { m MeV} H^+$	μSi	μMCP	$\frac{(\mu MCP - \mu Si)}{\mu Si}$	
evts 0-2500(CAL)	$4.92(0) \pm 0.03$	$4.9(06) \pm 0.1$	-0.3%	
evts 2500-5000	$4.96(7) \pm 0.03$	$4.9(36) \pm 0.1$	-0.6%	
evts 5000-7500	$4.63(9) \pm 0.03$	$4.6(28) \pm 0.1$	-0.2%	
evts 7500-10000	3.67 ± 0.04	$3.48(7) \pm 0.09$	-5% 🔶	
$1.2 { m MeV} H^+$				
evts 0-10000(CAL)	$3.05(8) \pm 0.03$	$3.04(3) \pm 0.05$	-0.5%	
evts 10000-20000	$3.10(2) \pm 0.02$	3.11 ± 0.06	-0.27%	
evts 20000-30000	$3.23(9) \pm 0.02$	$3.34(8) \pm 0.06$	+3%	
evts 30000-40000	$3.24(3) \pm 0.03$	$3.26(1) \pm 0.05$	+0.55%	

 $3.20(9) \pm 0.02$ $3.29(7) \pm 0.07$

evts 40000-50000

<mark>μSi</mark> from Poisson fit

µMCP from integral spectra after calibration

(Delivered dose = (µMCPxN°events)xE)

TEST: 60% decrease in average multiplicity with respect to the first dat set

25% decrease in average multiplicity with respect to the first dat set

Possible problems

With protons and with Li ions the foil-MCP system detection efficiency is reduced

Work with bunches of multiplicity ≥5

Some ion may not hit the Si detector if it leaves the foil with a large angle

Ion	$P_loss(distance10cm)$	$P_loss(distance 15 cm)$	$P_loss(distance 2.5 cm)$	
^{16}O (10 MeV)	2.54%	7.63%	0.0009%	Reduce foil thickness
^{12}C (10 MeV)	1%	2.6%	0.0005%	 Minimize foil-Si distance
$^{7}Li~(7.5~{\rm MeV})$	0.3%	0.6%	0.0002%	
H (1.2 MeV)	0.8%	2.2%	0.001%	
H (2 MeV)	0.4%	0.7%	0.0002%	

Conclusions and future work

The first irradiations with quartz samples will be carried out with the new system. Samples must be irradiated with known and uniform doses