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Introduction



  

“Ladies and gentlemen, we have detected 
gravitational waves. We did it!”

David Reitze - Executive Director of the LIGO 
Laboratory (11/02/2016)

2Phys. Rev. Lett., 116, 061102 (2016)



  

Data analysis in the era of
gravitational wave astronomy



  

Improvement New science
● Independent inference

● Usability

● Flexibility

gwmodel

● Dedicated tools for cutting-edge 
research

● Address unobserved phenomena

microlensingGW

What's next for data analysis?
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gwmodel
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CBC inference pipeline

pipeline
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CBC inference pipeline

pipeline
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cbcmodel cbcinjection

Inference

● Time/frequency domain

● Real/simulated signals

● Arbitrary number of ground-
based detectors

● Supports any LAL waveform

Mock signals

●  Arbitrary 
astrophysical 
distributions

pipeline

gwmodel



  

cbcmodel

GravitationalWaveModel

IFODetector

.load_data

.generate_data

Data .logLikelihood CPNest .postprocess OUTPUT

gwmodel/noise/noise.py

gwmodel/noise/noise.py

gwmodel/cbcmodel gwmodel/detectors/
groundbased/ifo.py

gwmodel/postprocess/
postprocess.py

.calculate_plain_template

gwmodel/cbcmodel

LAL/TEOBResumS

.log_prior

gwmodel/cbcmodel
Prior distributions

Likelihood function

Waveform generator

Real data loading

Synthetic data generator

Interferometers' class
Sampler

(nest)

                  Data management                     Sampling                  Postprocessing

FunctionClass External moduleExecutable

Posterior plots
Chains

Waveforms
Psds 
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cbcinjection
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cbcinjection

Executable

InjectionDistributions

VolumeDistribution

MassDistribution

SpinDistribution

TidalDistribution

OrientationDistribution

TimeDistribution

Class

gwmodel/simulation

Parameters' astrophysical 
distributions

OUTPUT

config_1.ini
.
.
.
.

config_n.ini

If BNS are requested

Parameter file for 
each generated 

event

                                   Parameters extraction  Injections storage



  

Results

● Tested on O1 and O2 events, results compatible with LVC

GW170814
● IMRPhenomPv2, estimated PSD, bounds informed by LVC results
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Future developments

p-p plot as  final validation

● 100 simulated events study

● Eventual debugging

Speed up performances
● Investigation of the critical passages

Public release

●  Organisation, documentation, license
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microlensingGW
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Lensing

● Multiple images

● Magnification/demagnification

● Time delay

Strong lensing

● Stellar mass lenses

● Too small separations for optical resolution
(µarcsec)

● Mesurable in time resolution (ms) by 

LIGO/Virgo

Microlensing

● GWs as a unique probe

● Infer lens properties unobservable in opticalSchneider, Kochanek and  Wambsganss
Gravitational Lensing: Strong, Weak and Micro (2006)
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Criticalities

● Need to solve two non-linear, algebraic, coupled equations in two dimensions

● No procedure is guaranteed to find a complete set of solutions in 2D (Press et al., 2007)

Standard approach

● Ray-shooting + numerical

solver

Numerical sover

Numerical sover
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Criticalities

Standard approach

● Not suitable to microimages

separation

● Not guarantee to handle 

potentials with very different

scales (galaxy +

the halo of stellar mass lenses)

Numerical sover

Numerical sover

● Need to solve two non-linear, algebraic, coupled equations in two dimensions

● No procedure is guaranteed to find a complete set of solutions in 2D (Press et al., 2007)
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microlensingGW

● New algorithm specifically tailored for microlensing

● Direct access to waveforms and strains thanks to its integration with gwmodel

● Necessary for systematic parameter space investigations, model selection, detectability studies, ...

A  new strategy

● Split the solution of the system into

strong lenses and strong lenses +

microlenses

● Dynamical iteration on adaptive

grids

● The potential determines the

stopping condition of

the integration
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Results

Diego et al. (2019)

● Galaxy +100 Msun point mass

● Reproduces images'
geometry, magnifications
and time delays

-0.060.39

Total magnification = 30

Validation on the literature
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Results

Schneider, Weiss (1986)

● Binary point mass lens

● Reproduces images'
geometry and positions

Validation on the literature
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Results

● GW150914-like source

● H1-L1 network at O1 sensitivity

New findings

Diego et al. (2019)

Distinguishable as lensed events
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Results

● Non spinning binary, (Mc=20, q=0.8)

● H1-L1-V1 network at design sensitivity

New findings

● Elliptical galaxy + ~900 microlenses

● Core radius 500pc,
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Results

● Non spinning binary, (Mc=20, q=0.8)

● H1-L1-V1 network at design sensitivity

New findings

● Elliptical galaxy + ~900 microlenses

● Core radius 500pc,

DETECTABLE

DISTINGUISHABLE AS LENSED



  

Future developments

Improvement of the magnification routine
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Public realease

Model investigation
●  Background distribution, macromodel

● Organisation, documentation, license

● More refined approximation to the magnification factor



  

Conclusions

● Functional Python pipeline for CBC inference

● Flexible, extendible, accessible to both experts and beginners

● Reproduces LIGO/Virgo results
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gwmodel

microlensingGW

● First Python software for microlensing (of GWs)

● New solving algorithm

● Waveforms and strains as byproducts

● Validated on the literature

● First systematic assessment of detectability and lensed distinguishability on realistic models

 



  

THANK YOU!



  

BACK UP SLIDES



  

Bayesian inference

● Probability distributions are recovered for each parameter

● Uses Bayes' theorem

Bayes' theorem



  

Bayesian inference
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Bayes' theorem
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Noise

The model Prior information
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before analysing the data
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Bayesian inference

● Probability distributions are recovered for each parameter

● Uses Bayes' theorem

Bayes' theorem

Posterior Prior Likelihood



  

Model selection

Bayes' theorem

Odds ratio and Bayes' factor



  

gwmodel: inference model

LikelihoodPriors

Simulation distributions



  

cbcmodel: usage

Real data

$ cbcmodel  - - config-file   pipeconfig.ini



  

cbcmodel: usage

Real data

$ cbcmodel  - - config-file   pipeconfig.ini

Simulated signals

$ cbcmodel  - - injection-file event_0.ini - - config-file   pipeconfig.ini



  

cbcinjection: usage

$ cbcinjection  - - config-file   simulation.ini  - - output-folder ./Test



  

Lensing theory

Time delay

Amplification factor

Geometrical optics



  

Default settings

Additional funtionalities to tune 
the iteration parameters 
(problematic potentials)

$ python MyLensingScript.py  - - injection-file event_0.ini  - - config-file  pipeconfig.ini

    - - output-folder ./Test 

● Must define the lensing potentials, e.g. through LENSTRONOMY

(Birrer, Amara arXiv:1804.012)

microlensingGW: usage



  



  

microlensingGW in details

Solving algorithm

● It first considers the macromodel only and

centres a window on the source, then pixels it;

● the centre of each pixel is ray-shooted and

evaluated against the goodness criterion;

● good pixels whose distance from the source

already satisfies the requested precision limit

are accepted as solutions;

● the remaining pixels are considered as centres

of a new window proportional to the old tile,

which is then pixelled again;

● the whole thing is repeated until no more 
good regions are found, or the pixel size 
threshold of 10-25 radians is reached: this 
allows to find the macroimages;

● the complete lens model is considered: if

the user specified around which macroimage

to look for microimages, points 1.-5.

are repeated around that point;

if not, each maroimage is checked against.



  

microlensingGW: additional features

Optimization mode

Tunable

Tunable

Tunable



  

microlensingGW: additional features

NearSource

Further zoom around the source



  

microlensingGW: additional features

OnlyMicro

Only solves for the microlenses bakground



  

microlensingGW: additional features

Complete list of tunable settings
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