Compact binary coalescences under the microscope: data analysis tools for the present and for the future

Giulia Pagano

Università di Pisa, INFN Pisa

giulia.pagano@pi.infn.it

September 23, 2019 - 2nd year PhD seminar

Outlook

- Introduction
- Data analysis in the era of gravitational wave astronomy
- gwmodel
- microlensingGW
- Conclusions

Introduction

"Ladies and gentlemen, we have detected gravitational waves. We did it!"

David Reitze - Executive Director of the LIGO Laboratory (11/02/2016)

Phys. Rev. Lett., 116, 061102 (2016)

Data analysis in the era of gravitational wave astronomy

What's next for data analysis?

Improvement

- Independent inference
- Usability
- Flexibility

New science

- Dedicated tools for cutting-edge research
- Address unobserved phenomena

gwmodel

gwmodel

CBC inference pipeline

CBC inference pipeline

pipeline

gwmodel

cbcinjection

😓 Executable 🛛 🔂 Class

• Tested on **O1** and **O2** events, results compatible with LVC

GW170814

• IMRPhenomPv2, estimated PSD, bounds informed by LVC results

Parameter	LVC	gwmodel
Source frame primary mass m_1/M_{\odot}	$30.7^{+5.7}_{-3.0}$	$32.2_{-3.8}^{+7.6}$
Source frame secondary mass m_2/M_{\odot}	$25.3^{+2.9}_{-4.1}$	$24.8^{+3.1}_{-5.1}$
Source frame chirp mass \mathcal{M}_c/M_{\odot}	$24.2^{+1.4}_{-1.1}$	$24.5^{+1.2}_{-1.1}$
Source frame final mass $M_{\rm f}/M_\odot$	$53.4^{+3.2}_{-2.4}$	$54.1_{-2.4}^{+3.7}$
Effective inspiral spin $\chi_{\rm eff}$	$0.07\substack{+0.12 \\ -0.11}$	$0.00\substack{+0.18\\-0.24}$
Final spin $a_{\rm f}$	$0.72_{-0.05}^{+0.07}$	$0.67\substack{+0.06\\-0.09}$
Luminosity distance $\mathrm{D_L/Mpc}$	580^{+160}_{-210}	627^{+163}_{-213}

Future developments

p-p plot as final validation

- 100 simulated events study
- Eventual debugging

Speed up performances

• Investigation of the critical passages

Public release

• Organisation, documentation, license

microlensingGW

Lensing

$$\boldsymbol{\beta} = \boldsymbol{\theta} - \boldsymbol{\alpha}(\boldsymbol{\theta}), \, \boldsymbol{\alpha} = \boldsymbol{\nabla}\psi$$

Multiple images

- Magnification/demagnification
- Time delay

Microlensing

Strong lensing

- Stellar mass lenses
- Too small separations for optical resolution (µarcsec)
- Mesurable in time resolution (ms) by

LIGO/Virgo

- 📕 GWs as a unique probe
- Infer lens properties unobservable in optical

10

Schneider, Kochanek and Wambsganss Gravitational Lensing: Strong, Weak and Micro (2006)

Criticalities

- Need to solve two non-linear, algebraic, coupled equations in two dimensions
- No procedure is guaranteed to find a complete set of solutions in 2D (Press et al., 2007)

Standard approach

$$\boldsymbol{\beta} = \boldsymbol{\theta} - \boldsymbol{\alpha}(\boldsymbol{\theta})$$

 Ray-shooting + numerical solver

Criticalities

- Need to solve two non-linear, algebraic, coupled equations in two dimensions
- No procedure is guaranteed to find a complete set of solutions in 2D (Press et al., 2007)

Standard approach

- Not suitable to microimages separation
- Not guarantee to handle
 - potentials with very **different** scales (galaxy +

the halo of stellar mass lenses)

microlensingGW

- New algorithm specifically tailored for microlensing
- Direct access to waveforms and strains thanks to its integration with gwmodel
- Necessary for systematic parameter space investigations, model selection, detectability studies, ...

A new strategy

- Split the solution of the system into strong lenses and strong lenses + microlenses
- Dynamical iteration on adaptive grids
- The potential determines the stopping condition of

the integration

Validation on the literature

Diego et al. (2019)

- Galaxy +100 Msun point mass
- Reproduces images' geometry, magnifications and time delays

Validation on the literature

Schneider, Weiss (1986)

- Binary point mass lens
- Reproduces images' geometry and positions

Magnification | $\log_{10} \mu$

New findings

Diego et al. (2019)

- GW150914-like source
- H1-L1 network at O1 sensitivity

Distinguishable as lensed events

New findings

- Elliptical galaxy + ~900 microlenses
- Core radius 500pc, $\epsilon=0.1$

- Non spinning binary, (Mc=20, q=0.8)
- H1-L1-V1 network at design sensitivity

- Elliptical galaxy + ~900 microlenses
- Core radius 500pc, $\epsilon = 0.1$

- Non spinning binary, (Mc=20, q=0.8) •
- H1-L1-V1 network at design sensitivity

Future developments

Improvement of the magnification routine

• More refined approximation to the magnification factor

Public realease

• Organisation, documentation, license

Model investigation

• Background distribution, macromodel

Conclusions

gwmodel

- Functional Python pipeline for CBC inference
- Flexible, extendible, accessible to both experts and beginners
- Reproduces LIGO/Virgo results

microlensingGW

- First Python software for microlensing (of GWs)
- New solving algorithm
- Waveforms and strains as byproducts
- Validated on the literature
- First systematic assessment of detectability and lensed distinguishability on realistic models

THANK YOU!

BACK UP SLIDES

- Probability distributions are recovered for each parameter
- Uses Bayes' theorem

Bayes' theorem

$$p(\vec{\theta} | dHI) = p(\vec{\theta} | HI) \cdot \frac{p(d | \vec{\theta} | HI)}{p(d | HI)}$$

- Probability distributions are recovered for each parameter
- Uses Bayes' theorem

Bayes' theorem

$$p(\vec{\theta} \ dHI) = p(\vec{\theta} \ |HI) \cdot \frac{p(d|\vec{\theta} \ HI)}{p(d|HI)}$$

The data

Prior information

Any **information** available **before** analysing the **data**

- Probability distributions are recovered for each parameter
- Uses Bayes' theorem

Bayes' theorem

$$p(\vec{\theta} | dHI) = p(\vec{\theta} | HI) \cdot \frac{p(d | \vec{\theta} HI)}{p(d | HI)}$$

The data

 $d_{_{H}}(t), d_{_{L}}(t), d_{_{V}}(t)$

The model

Prior information

Any **information** available **before** analysing the **data**

- Probability distributions are recovered for each parameter
- Uses Bayes' theorem

Bayes' theorem

$$p(\vec{\theta} | dHI) = p(\vec{\theta} | HI) \cdot \frac{p(d | \vec{\theta} HI)}{p(d | HI)}$$

The data

 $d_{_{H}}(t), d_{_{L}}(t), d_{_{V}}(t)$

Prior information

Any **information** available **before** analysing the **data**

- Probability distributions are recovered for each parameter
- Uses Bayes' theorem

Bayes' theorem

Model selection

Bayes' theorem

$$p(H_1|DI) = p(H_1|I) \frac{p(D|H_1I)}{p(D|I)}$$
$$p(H_2|DI) = p(H_2|I) \frac{p(D|H_2I)}{p(D|I)}$$

Odds ratio and Bayes' factor

gwmodel: inference model

Priors

Parameter	Distribution	Reparametrisation	Prior bounds
m_i	uniform	\mathcal{M}_c, q	$\mathcal{M}_c \in [8.5, 70] \mathrm{M}_{\odot}, q \in [0.125, 1]$
D_L	D_L^2	$\ln D_L$	$[\ln(1/Mpc), \ln(3000/Mpc)]$
right ascension (ϕ)	uniform		$[0,\pi]$
declination (θ)	$\cos heta$		$[-\pi/2, \pi/2]$
a_i	uniform		$[0, 0.8], [0, 1]^*$
$ heta_{li}$	$\sin \theta_l$		$[0,\pi],\{0,\pi\}^*$
ϕ_{li}	uniform		$[0, 2\pi]$, UNDEF.*
inclination (ι)	"		$[0,\pi]$
ψ	"		$[0,\pi]$
ϕ_0	"		$[0, 2\pi]$
t_c	"		$[t_c^{ m guess} - 0.05, t_c^{ m guess} + 0.05]$ s
Λ_i	"		[1, 5000]

$\ln p(d|\vec{\theta}, H, I) = -\frac{2}{T} \sum_{IFO} \int df \frac{|\tilde{d}(f) - \tilde{h}(f)|^2}{S_n(f)}$

Likelihood

Simulation distributions

Parameter	Distributions	Output	Frame
m_i	uniform, power law, Gaussian (source frame)	\mathcal{M}_c, q	source frame, detector frame
D_L	D_L^2 or redshift extracted according to uniform comoving volume density		
right ascension (ϕ)	uniform		
declination (θ)	$\cos heta$		
a_i	uniform		
$ heta_{li}$	$\sin heta_l$		
ϕ_{li}	uniform		
inclination (ι)	$\sin \iota$		
ψ	uniform		
ϕ_0	"		
t_c	Poisson, gridded		
Λ_i	EOS or uniform		

cbcmodel: usage

Real data

\$ cbcmodel - - config-file pipeconfig.ini

Real data

\$ cbcmodel - - config-file pipeconfig.ini

Simulated signals

\$ cbcmodel - - injection-file event_0.ini - - config-file pipeconfig.ini

cbcinjection: usage

\$ cbcinjection - - config-file simulation.ini - - output-folder ./Test

		1.0			
1	<pre>[waveform settings]</pre>	40	[orientation distribution]		
2		41			\
3	approximant=TaylorF2	42	inclination_min=0.0		
4	amp_order=0	43	inclination max=np.pi		
5	phase_order=-1	44	psi_min=0.0		
6	fref = 100.0	45	psi_max=np.pi		
7		46	phi0_min=0.0		
8	[mass distribution]	47	phi0_max=2.0*np.pi		
9		48			
10		49	[volume distribution]		
11		50			
12	q_min=0.8	51	; Set cosmology True to sample the redshift and convert to the distance.		
13	q_max=1.0	52	cosmology=True		
14	m1_min = 10.0	53	distance_min=1.0		
15	m1_max = 20.0	54	distance_max=1000.0		
16	$m2_{min} = 10.0$	55	redshift_min=0.0		/
17	$m2_max = 20.0$	56	redshift_max=0.5	/	/
18	$mc_{min} = 1.0$	57	ra_min=0.0		
19	$mc_max = 50.0$	58	ra_max=2.0*np.pi		
20	distribution = uniform	59	dec_min=-np.pi/2.0	·	
21	<pre>frame = detector_frame</pre>	60	dec_max=np.pi/2.0		
22	<pre>variable = component_masses</pre>	61			
23		62	[time distribution]		
24	[spin distribution]	63			
25		64	tc_min=0.0		
26	spin1_min=0.0	65	tc_max=100.0		
27	spin1_max=0.99	66	distribution = gridded		
28	spin2_min=0.0	67	n = 100		
29	spin2_max=0.99	68			
30	theta_11_min = 0.0	69	[lidal distribution]		
31	phi_11_min = 0.0	70			
32	theta_11_max = np.pi	/1	eos=		
33	phi_11_max = 2.0*np.pi	72			
34	theta $21 \text{ min} = 0.0$	13	lambal max=		
35	phi_21_min = 0.0	74			
36	theta_21_max = np.pi	75			
37	phi_21_max = 2.0*np.pi	16			
38	distribution = aligned				

Lensing theory

Time delay

$$t_d(\boldsymbol{\theta}, \boldsymbol{\beta}) = \frac{(1+z_L)D_d D_s}{cD_{ds}} \left[\frac{1}{2}|\boldsymbol{\theta} - \boldsymbol{\beta}|^2 - \psi(\boldsymbol{\theta}) + \Phi_m(\boldsymbol{\beta})\right]$$

Amplification factor

$$F(\omega_{GW}, \boldsymbol{\beta}) = \frac{D_s D_d}{D_{ds}} \frac{\omega_{GW}}{2\pi i} \frac{(1+z_L)}{c} \int d^2 \theta \exp\left[i\omega_{GW} t_d(\boldsymbol{\theta}, \boldsymbol{\beta})\right]$$
$$h_{\text{LENSED}} = F \cdot h_{\text{UNLENSED}}$$

Geometrical optics

$$F_{geo} = \sum_{j} |\mu_{j}|^{1/2} exp[i\omega_{GW}t_{d}(\boldsymbol{\theta}_{j},\boldsymbol{\beta}) - i\pi n_{j}]$$
$$\mu_{j} = \det \frac{\partial \boldsymbol{\beta}}{\partial \boldsymbol{\theta}}\Big|_{\boldsymbol{\theta}_{j}}$$

microlensingGW: usage

Default settings

Additional funtionalities to tune the iteration parameters (problematic potentials)

\$ python MyLensingScript.py - - injection-file event_0.ini - - config-file pipeconfig.ini

- - output-folder ./Test

 Must define the lensing potentials, e.g. through LENSTRONOMY (Birrer, Amara arXiv:1804.012)

6 7 8 9 10	<pre>6 # microlensingGW imports 7 from microlensinggw.waveform.waveform import gwmodel_strain, gwmodel_lensed # gwmodel in 8 from microlensinggw.solver.microlensing import microimages # microlensing 9 from microlensinggw.parser.parser import parse # parser scr 10</pre>	tegrated lensing routines ng solver ipt to parse from command line
11 12 13 14 15 16	11 ####################################	₭ <i>╀╄╄╄╄╄╄╄╄╄╄╄╄╄</i>
17 18 19 20 21	<pre>17 # parse the ini files from command line 18 injection_file, config_file, output_folder = parse() 19 # compute the projected strain in time domain and frequency domain with gwmodel 20 times, frequencies, strain_td, strain_fd, hptilde, hctilde, psd, seg_len, sampling_rate, 21</pre>	<pre>snr_quantities = gwmodel_strain_injection_file,config_file;</pre>
22 23 24 25 26 27 28	22 23 24 25 26 27 28	######################################
29	29 # solver settings	
30	30 ⊨kwargs = {' NearSource': False ,	
31	31 'scaled': False,	
32	32 'img_iax': 0}	
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 	<pre>33 # Solve for the images and related quantities 35 EmicroImgRA, microImgDEC, macroImgRA, macroImgDEC, F, Mu, td, diff = microimages 36 37 38 39 40 41 42 43 44 45 46 47</pre>	<pre>> = frequencies, y0 = SourceRA, y1 = SourceDEC, zS = z_source, lens_model_list = LensModelList, redshift_list = RedshiftList, funct_list = LensClassList, macro_index = [0], search_window_macro = 3, search_window = 0.0000001, precision_limit = 10**(-20), verbose = True, signal_length = 1.44,</pre>
48	48	cosmo = cosmology,
49 50 51	49 50 51	<pre>optimization = False, **kwargs)</pre>
52	52	
53	53 ####################################	****
54	54 # compute the lensed strain and way	veform with gwmodel #
55	55	*****
56	56	
57 58 59 60 61 62	<pre>57 Blensed_strain_fd, lensed_strain_td, hptilde_lensed, hctilde_lensed = gwmodel 58 59 60 61 62</pre>	_lensed hptilde, hctilde, strain_fd, Fmag, seg_len, snr_quantities)
63	63 4	

microlensingGW in details

Solving algorithm

- It first considers the macromodel only and centres a window on the source, then pixels it;
- the centre of each pixel is ray-shooted and evaluated against the goodness criterion;
- good pixels whose distance from the source already satisfies the requested precision limit are accepted as solutions;
- the remaining pixels are considered as centres of a new window proportional to the old tile, which is then pixelled again;

- the whole thing is repeated until no more good regions are found, or the pixel size threshold of 10⁻²⁵ radians is reached: this allows to find the macroimages;
- the complete lens model is considered: if the user specified around which macroimage to look for microimages, points 1.-5. are repeated around that point; if not, each maroimage is checked against.

Optimization mode

NearSource

OnlyMicro

Only solves for the microlenses bakground

Complete list of tunable settings

option	optimization	description	default
macro_index		list of potentials which make up the macromodel	None
search_window_macro		size of the first macromodel grid	None
search_window		size of the first complete model grid	None
optimization_window	1	zoom windows multiplying factor, macromodel	2
optimization_window_micro	1	zoom windows multiplying factor, complete model	2
optimization_pixels	1	pixels of the zooms, macromodel	30
optimization_pixels_micro	1	pixels of the zooms, complete model	30
min_dist_requirement	1	minimum rayshooted distance from the source, macromodel	None
<pre>min_dist_requirement_micro</pre>	1	minimum rayshooted distance from the source, complete model	None
improvement	1	contraction of the minumum distance at each iteration, macromodel	1
improvement_micro	1	contraction of the minumum distance at each iteration, complete model	1
overalp_condition		distance below which solutions are considered overlaps, macromodel	10^{-15}
overalp_condition_micro		distance below which solutions are considered overlaps, complete model	10^{-15}
precision_limit	0	precision of the recovered solutions, all models	10^{-20}
optimisation_precision_limit	1	precision of the recovered solutions, macromodel	10^{-20}
optimisation_precision_limit_micro	1	precision of the recovered solutions, complete model	10^{-20}
NearSource		enables further zoom near the source position	False
only_micro		considers only the microlenses background	False
scaled		converts the output in scaled units	False
scaleFactor		conversion factor	1
img_index		macroimage selected for the zoom	full set