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Introduction

• QCD is the theory which describes strong interactions within the Standard Model.

• Perturbation theory works very well in the high energy regime → Deep inelastic
scattering.

Problems rise in the low energy regime, perturbative appoach is not allowed →
Confinement, hadron masses ...

• Lattice QCD → first principle approach based on Feynman path integral to solve QCD.
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QCD phase diagram

QCD has a rich phase diagram in the µB−T plane, intensively studied in the recent years:

• µB = 0: analitic crossover separets
hadronic matter and the quark gluon
plasma (QGP) (well established).

• Low T and high µB : a first order
transition may be found → Neutron
stars (still open question).

• If a first order is present, one expect
a critical endpoint with a second or-
der transition.
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QCD with external B fields

QCD with B fields at the strong scale. Found in many phenomenological contexts:

• Neutron stars and compact astrophysical objects, B ∼ 1010 T [Duncan and Thompson, 1992]

• First phase of off-central heavy ion collisions, B ∼ 1015 T [Skokov et al., 2009]

• Early universe, B ∼ 1016 T [Vachaspati, 1991]

We consider the heavy-ion collision scenario:

• Off-central collisions: ions generate mag-
netic fields, ortogonal to the reaction
plane. Strength controlled by

√
sNN and

the impact parameter.

• At LHC, B fields expected up to
eB ∼ 15m2

π

1015 Tesla ≈ 0.06 GeV2

These magnetic fields can lead to relevant modification of the strong dynamics.



QCD with external B fields

Electromagnetic background interacts only with quarks, but loop effects can modify also
the gluon dynamics.

• Magnetic field lead to non perturbative effects in:

. QCD phase diagram (location of the deconfinament cross over, ...)

. QCD vacuum structure (chiral symmetry breaking, ...)

. QCD equation of state (effect on the free energy of the QCD medium)

We will discuss non perturbative effects on:

• QCD equation of state [PRL 111 (2013) 182001; PRD 89 (2014) 054506]

• Static quarks potential. [PRD 89 (2014) 114502]



QCD on the lattice

• Start from path integral formulation of QCD
in Euclidean space-time. Discretize the theory
over a finite space-time lattice. → Regular-
ization

•

{
ψ(n), ψ̄(n) quark fields

Uµ(n) = eiagA
a
µ(n) parallel transporters

• Finite number of integration variables
→ Monte-Carlo algorithms can be used.

Ψ(n) Ψ(n+μ)

Uμ(n)

• Sample configurations with the probability distribution: detMe−S[U ], then:

〈O〉 =
1

Z

∫
D[U ]detMe−S[U ]O[U ] ' 1

N

N∑
i=0

O[U (i)] .

• Temperature of the statistical system: T = 1
Nta

, with Nt temporal extension.

• Remember: i) check finite size effects, ii) perform continuum limit.



Magnetic fields on the Lattice

• Add proper U(1) phases to SU(3) links:

Uµ(n)→ Uµ(n)uµ(n) uµ = exp (iqaµ(n))

• Periodic boundary conditions to reduce finite size ef-
fects → Quantization condition:

eiqBA = eiqB(A−LxLya2) → qB =
2πb

LxLya2
, b ∈ Z

• ~B = Bẑ → gauge fixing ay = Bx, then:

u(q)
y (n) = eia

2qBnx u(q)
x (n)|nx=Lx = e−i a

2qLxBny

Constant flux a2B in all x-y plaquettes, exluded one
plaquette at the corner, which has an additional flux
(1− LxLy)a2B → Dirac string. Not seen if b ∈ Z

b ∈ Z

b=2.00000

• For b /∈ Z string become visible. Non-uniform B =⇒

b /∈ Z

b=2.80000



Free energy density dependence on B

We want to determine f = f(T,B) on the lattice.

• For “small” magnetic fields: f(T,B) = f(T, 0) + 1
2
c2(T )B2 +O(B3) Then

χ ∝ c2(T ) = ∂2f(T,B)

∂B2

∣∣∣
B=0

... But ∂
∂B

not defined on the lattice!

• Our method:

. Analytic extension of f(T,B) (defined only for B = b ∈ Z) to non-integer B.

. Calculate on the lattice M(T,B) = ∂f(T,B)
∂B

(this is not the magnetization!).

. Numerical integration of M to determine :

∆f(T, b) = f(T, b)− f(T, 0) =

∫ b

0

M(B, T )dB b ∈ Z.

. B-dependent additive divergences are removed using:

∆fr(T, b) = ∆f(T, b)−∆f(0, b) .



Free energy density dependence on B

Continuum extrapolation of χ̃ from our lattice results.

χ̃(T ) = − e
2µ0c

18~π2
L4c2(T )

• The QCD medium is a paramag-
net in all the explored tempera-
ture.

• Sharp increase of χ̃ above
TC ∼ 150− 160 MeV.

• Low T → HRG behavior:

χ̃(T ) = Aexp(−M/T )

• High T → pQCD behavior:

χ̃(T ) = A′log(T/M ′)

• We observed a linear response up
to eB ≈ 0.2 GeV2.
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Free energy density dependence on B

Magnetic contribution to the pressure: ∆P (B) = −∆f = 1
2
χ̃(eB)2.
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Free energy density dependence on B

Low T: check with the hadron resonance model predictions [Endrődi, 2013]
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HRG predicts diamagnetic behavior at low-T , as one expects:

→ Dominant contributions from pions at low T.

• No evidence with present statistics for such behavior.
• Preliminary lattice indications for a diamagnetic behavior up to T ≈ 120 MeV.

[Bali, Bruckmann, Endrodi et. al., arXiV:1406.0269]



Anisotropic QQ̄ potential

Study of the static potential VQQ̂ with external magnetic fields

VQQ̄ can be described with the Cornell
parametrization:

VQQ̄(|~R|) = c+
α

|~R|
+ σ|~R|

α→ Coulomb term
σ → String tension

• Describes confinement.

• Quarkonium spectrum.
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Can be evaluated on the lattice measuring the Wilson
loop W (~r, T ):

〈W (~R, T )〉 ' C exp
(
−TVQQ̄(|~R|)

)
Thus:

VQQ̄(|~R|) = lim
T→∞

log

(
W (~R, T )

W (~R, T + 1)

)



Anisotropic QQ̄ potential

• The introduction of an external field B = Bẑ breaks explicitly the rotation symmetry of
the lattice theory.

• We calculate 〈W (~r, T )〉 separating Wilson loops with different spatial orientation.

W|| = WZ = W (rẑ, T )

W⊥ = WXY = [W (rx̂, T ) +W (rŷ, T )] /2

• The obtained potentials V|| and V⊥ are different
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Anisotropic QQ̄ potential
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We fit the potential for the different orientations,
using the Cornell parametrization:

aV (and̂) = ĉd + σdn+
αd
n

We define the ratios:

ROd =
Od(|e|B)

Od(|e|B = 0)
where Od = σ̂d, αd

We fit the data with: ROd = 1+AOd(|e|B)C
Od

Obs. Aσd Cσd χ2/dof

σz -0.34(1) 1.5(1) 0.92
σxy 0.29(2) 0.9(1) 1.14

Obs. Aαd Cαd χ2/dof

αz 0.24(3) 1.7(4) 0.32
αxy -0.24(3) 0.7(2) 1.53



Conclusions

• The QCD medium behaves as a paramagnet in all the explored temperatures.

. Weak magnetic activity in the confined phase, while the magnetic susceptibility
increase sharply across Tc ≈ 150− 160 MeV.

. The QCD medium has linear response up to eB ≈ 0.2 GeV2.

. The magnetic contribution to the pressure is 10− 50% in the range of fields
expected at LHC, 0.1− 0.2 GeV2.

• Anisotropic QQ̄ potential

. String tension decrease (increase) in the direction parallel (transverse) to the
magnetic field, viceversa for the Coulomb term.

. Anisotropy observed for eB & 0.2 GeV2

Future studies:

• Determination of higher order terms → relevant for cosmological models, where
eB ∼ 1 GeV2. Also c quark contributions can be relevant at higher temperatures.

• Heavy meson spectrum modification. Study of anisotropies at finite T → Relevant in
heavy ion collisions.



BACKUP



Backup

• For small field and a linear, homogeneous, isotropic medium, the magnetization is
proportional to the field:

M = χ̃
B

µ0
= χH

where B total field, H = B
µ0
−M external field, and χ = χ̃

1−χ̃ .

• In the small field limit we can use:

∆f =

∫
HdB → ∆fr = −

∫
MdB ≈ − χ̃

µ0

∫
BdB = − χ̃

2µ0
B2

• Our simulations are QED quenched, no backreaction from the medium → B coincides
with the external field added to the Dirac operator.

• QED quench does not affect the χ̃ measure. However, adding the backreaction of the
medium increase ∆fR by a factor 1/(1− χ̃)2 → Irrelevant a posteriori.



Backup

To get ∆f(T, b) we measured:

M =
∂ logZ

∂b
= −

〈
Tr

(
M−1 ∂M

∂b

)〉
b

• B no more quantized → Oscilla-
tions due to Dirac string.

• Numerical integration over M
spline interpolations → ∆f

• ∆f(Bk, T ) ≈ 1
2
c2(T )B2

k. We fit:

f(b, T )−f(b−1, T ) =

∫ b

b−1

M(B, T )dB

using:

c2(T )[b2−(b−1)2] = c2(T )(2b−1)

• c2(T ) determined from linear fit
coefficient. Then:

χ̃(T ) = − e
2µ0c

18~π2
L4c2(T )
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Backup

• Temperature: [Zhao and Rapp, ’11]

Assumption for the deconfinement temperature: Tc ' 170 MeV

5

T RHIC at 200 GeV LHC at 2.76 TeV

T > 2Tc - τf < τ < 1 fm/c
Tc < T < 2Tc τf < τ < 3 fm/c 1 fm/c < τ < 6 fm/c

T = Tc 3 fm/c < τ < 5 fm/c 6 fm/c < τ < 9 fm/c

Table 1.1: Evolution of the estimated temperature in typical heavy ion collisions at RHIC
and at LHC from [8]. Here, the transition temperature was assumed to be Tc ∼ 170 MeV.1.3 Structure and overview

Figure 1.3: A possible depiction of the phase diagram of QCD in the space of the state parameters:

the temperature T and the baryon density (which equals three times the quark density). Phases are

separated by a crossover transition at zero chemical potential. At larger values of ρ a first-order phase

transition may take place, which is indicated by the yellow band. The crossover and first-order lines

must then be separated by a critical endpoint. Regions at large densities and small temperatures are

thought to describe the interior of dense neutron stars. At even higher densities exotic phases like a

color superconductor are expected. Figure taken from [7].

phase and the QGP and thus also plays a very important role in high energy particle physics.

Moreover, recent results from RHIC imply that the high temperature quark-gluon plasma

exhibits collective flow phenomena. It is also conjectured that the description of hot matter

under these extreme circumstances can be given by relativistic hydrodynamic models. In turn,

these models depend rather strongly on the relationship between thermodynamic observables,

summarized by the equation of state. The EoS can be calculated using perturbative methods,

but unfortunately, such expansions usually converge only at temperatures much higher than

the transition temperature. Therefore the lattice approach (as a non-perturbative method) is

a suitable candidate to study the EoS in the transition region T ∼ Tc.

1.3 Structure and overview

In this thesis I concentrate on the low µ, high T region of the phase diagram, which – according

to the above remarks – is interesting for both the context of the evolution of the early Universe

and heavy ion collisions.

The thesis is structured as follows. First I present a brief introduction to the theoretical

study of the QGP. This includes the definition of the underlying theory, QCD, and the method

5

Figure 1.1: Possible phase diagram in the temperature and baryon number density plane
from [9]. The confined (white) and deconfined (orange) phases are separated at zero
baryon number density (i.e. at zero baryon chemical potential) by a smooth crossover
transition. At larger values of density a first order phase transition may take place, which
is indicated by the yellow band. The crossover and first-order lines must then be separated
by a second order critical endpoint. The region at large density and small temperature
should correspond to the typical conditions of the interior of dense neutron stars. At even
higher density exotic phases may take place, like a color superconductor phase.

quark densities we expect from asymptotic freedom that the coupling between the quarks
should decrease. This means that the pseudo critical temperature that separates the con-
fined and the QGP phases should decrease as a function of µB. Moreover the crossover that
is expected by Lattice QCD simulations at µB = 0 may become a true phase transition at
µB �= 0. Unfortunately it is not possible to study numerically the whole phase diagram,
but only to obtain informations about the small chemical potential region. Indeed at finite
µB the so called sign problem arises, which makes the action complex valued, hindering
the numerical simulations. These numerical studies are trying to go in the direction of
determining the transition line curvature and the behaviour of the transition for small µB,
by exploiting different approaches such as analytic continuation from imaginary chemical
potential or Taylor expansion. The expected phase diagram is shown in Fig. 1.1.

Recently, it was observed that during non-central collisions, in the region of space where

• Magnetic Field:

eB time evolution @ RHIC for Au − Au col-
lisions for two values of

√
sNN .

As the collision energy increases the
magnetic field increases, but it gets
more shrinked in time.

[Skokov, Illarionov and Toneev, ’09]

December 16, 2009 17:1 WSPC/139-IJMPA 04757

5928 V. V. Skokov, A. Yu. Illarionov & V. D. Toneev
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Fig. 2. The time evolution of the magnetic field strength eBy at the central point O (see Fig. 1)
in Au–Au collisions with impact parameter b = 4 fm in the UrQMD model, in one event (“1 ev”)
and averaged over 100 events (“100 ev”). The symbols are plotted every ∆t = 0.2 fm/c for
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√
sNN = 200 GeV.
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velocity. On the other hand, for very high ultrarelativistic energies of a collision

the contribution to the magnetic field is feasible only for particles close to the

transverse plane (Rn − Rnvn) ∼ 0. The contribution from particles away from the

transverse plane is suppressed by the factor (1 − v2). From the expression (1) it

also follows that the characteristic magnetic field dependence on nuclei charge is

given by eB ∼ Z/R2, where R is the characteristic length scale proportional to the

nuclei radius. For stable nuclei we have R ∼ A1/3 ∼ Z1/3 and thus eB ∼ Z1/3,

demonstrating a weak field dependence on the nuclei charge (see similar estimate

in Ref. 17).

In Figs. 2 and 3, the time evolution of the magnetic field strength for SPS

and RHIC energies is shown. The magnetic field is created in the noncentral Au–

Au collision with the impact parameter b = 4 fm. The resulting field strength is
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