QCD properties with external magnetic fields

Marco Mariti

University of Pisa, Italy

October 22, 2014

・ロト・日本・モト・モート ヨー うへで

Introduction

- QCD is the theory which describes strong interactions within the Standard Model.
- Perturbation theory works very well in the high energy regime \rightarrow Deep inelastic scattering.

Problems rise in the low energy regime, perturbative appoach is not allowed \rightarrow Confinement, hadron masses ...

• Lattice QCD \rightarrow first principle approach based on Feynman path integral to solve QCD.

QCD phase diagram

QCD has a rich phase diagram in the $\mu_B - T$ plane, intensively studied in the recent years:

QCD with external B fields

QCD with B fields at the strong scale. Found in many phenomenological contexts:

- Neutron stars and compact astrophysical objects, ${
 m B} \sim 10^{10}~{
 m T}$ [Duncan and Thompson, 1992]
- First phase of off-central heavy ion collisions, ${
 m B} \sim 10^{15}$ T [Skokov et al., 2009]
- Early universe, $\mathbf{B} \sim \mathbf{10^{16}}~\mathsf{T}$ [Vachaspati, 1991]

We consider the heavy-ion collision scenario:

- Off-central collisions: ions generate magnetic fields, **ortogonal** to the reaction plane. Strength controlled by $\sqrt{s_{NN}}$ and the impact parameter.
- At LHC, B fields expected up to $eB \sim ~15m_\pi^2$

 $10^{15}~{\rm Tesla}\approx 0.06~{\rm GeV^2}$

These magnetic fields can lead to relevant modification of the strong dynamics.

QCD with external B fields

Electromagnetic background interacts only with quarks, but loop effects can modify also the gluon dynamics.

- Magnetic field lead to non perturbative effects in:
 - ▷ QCD phase diagram (location of the deconfinament cross over, ...)
 - ▷ QCD vacuum structure (chiral symmetry breaking, ...)
 - ▷ QCD equation of state (effect on the free energy of the QCD medium)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

We will discuss non perturbative effects on:

- QCD equation of state [PRL 111 (2013) 182001; PRD 89 (2014) 054506]
- Static quarks potential. [PRD 89 (2014) 114502]

QCD on the lattice

- Start from path integral formulation of QCD in Euclidean space-time. Discretize the theory over a finite space-time lattice. \rightarrow Regularization
- $\begin{cases} \psi(n), \ \bar{\psi}(n) & \text{quark fields} \\ U_{\mu}(n) = e^{iagA^a_{\mu}(n)} & \text{parallel transporters} \end{cases}$
- Finite number of integration variables
 → Monte-Carlo algorithms can be used.

• Sample configurations with the probability distribution: det $Me^{-S[U]}$, then:

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D}[U] \mathrm{det} M e^{-S[U]} \mathcal{O}[U] \simeq \frac{1}{N} \sum_{i=0}^{N} \mathcal{O}[U^{(i)}] \; .$$

- Temperature of the statistical system: $T = \frac{1}{N_t a}$, with N_t temporal extension.
- Remember: i) check finite size effects, ii) perform continuum limit.

Magnetic fields on the Lattice

• Add proper U(1) phases to SU(3) links:

$$U_{\mu}(n) \rightarrow U_{\mu}(n)u_{\mu}(n)$$
 $u_{\mu} = \exp\left(iqa_{\mu}(n)\right)$

Periodic boundary conditions to reduce finite size effects → Quantization condition:

$$e^{iqBA} = e^{iqB(A - L_x L_y a^2)} \to qB = \frac{2\pi b}{L_x L_y a^2} , \quad b \in \mathbb{Z}$$

•
$$\vec{B} = B\hat{z} \rightarrow$$
 gauge fixing $a_y = Bx$, then:

$$u_y^{(q)}(n) = e^{ia^2qBn_x} \quad u_x^{(q)}(n)|_{n_x = L_x} = e^{-i\ a^2qL_xBn_y}$$

Constant flux a^2B in all x-y plaquettes, exluded one plaquette at the corner, which has an additional flux $(1 - L_x L_y)a^2B \rightarrow$ Dirac string. Not seen if $b \in \mathbb{Z}$

For b ∉ Z string become visible. Non-uniform B ⇒

We want to determine f = f(T, B) on the lattice.

• For "small" magnetic fields: $f(T,B) = f(T,0) + \frac{1}{2}c_2(T)B^2 + \mathcal{O}(B^3)$ Then $\chi \propto c_2(T) = \left. \frac{\partial^2 f(T,B)}{\partial B^2} \right|_{B=0} \dots$ But $\frac{\partial}{\partial B}$ not defined on the lattice!

- Our method:
 - ▷ Analytic extension of f(T, B) (defined only for $B = b \in \mathbb{Z}$) to non-integer B.
 - ▷ Calculate on the lattice $\mathcal{M}(T, B) = \frac{\partial f(T, B)}{\partial B}$ (this is **not** the magnetization!).

(日) (同) (三) (三) (三) (○) (○)

▷ Numerical integration of \mathcal{M} to determine : $\Delta f(T,b) = f(T,b) - f(T,0) = \int_0^b \mathcal{M}(B,T) dB \quad b \in \mathbb{Z}.$

 $\triangleright \ B\text{-dependent additive divergences are removed using:} \\ \Delta f_r(T,b) = \Delta f(T,b) - \Delta f(0,b) \ .$

Continuum extrapolation of $\tilde{\chi}$ from our lattice results.

$$\tilde{\chi}(T) = -\frac{e^2\mu_0 c}{18\hbar\pi^2}L^4 c_2(T)$$

- The QCD medium is a **paramagnet** in all the explored temperature.
- Sharp increase of $\tilde{\chi}$ above $T_C \sim 150 160 \text{ MeV}.$
- Low $T \to \text{HRG}$ behavior: $\tilde{\chi}(T) = A \exp(-M/T)$
- High $T \to {\rm pQCD}$ behavior: $\tilde{\chi}(T) = A' {\rm log}(T/M')$
- We observed a linear response up to $eB \approx 0.2 \text{ GeV}^2$.

▲□ > ▲圖 > ▲ 臣 > ▲ 臣 > → 臣 = ∽ 의 < ⊙ < ⊙

Magnetic contribution to the pressure: $\Delta P(B) = -\Delta f = \frac{1}{2}\tilde{\chi}(eB)^2$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Of the order 10% for 0.1 GeV^2 , 50% for 0.2 GeV^2 .

Low T: check with the hadron resonance model predictions [Endrődi, 2013]

HRG predicts **diamagnetic** behavior at low-T, as one expects:

- \rightarrow Dominant contributions from pions at low T.
- No evidence with present statistics for such behavior.
- Preliminary lattice indications for a diamagnetic behavior up to $T \approx 120$ MeV. [Bali, Bruckmann, Endrodi et. al., arXiV:1406.0269]

Anisotropic $Q\bar{Q}$ potential

Study of the static potential $V_{Q\hat{Q}}$ with external magnetic fields

 $V_{Q\bar{Q}}$ can be described with the Cornell parametrization:

$$V_{Q\bar{Q}}(|\vec{R}|) = c + \frac{\alpha}{|\vec{R}|} + \sigma |\vec{R}|$$

- $\alpha \to \operatorname{Coulomb}\,\operatorname{term}$
- $\sigma \rightarrow {\rm String}$ tension
- Describes confinement.
- Quarkonium spectrum.

Can be evaluated on the lattice measuring the Wilson loop $W(\vec{r},T)$:

$$\langle W(\vec{R},T)\rangle \simeq C \exp\left(-TV_{Q\bar{Q}}(|\vec{R}|)\right)$$

Thus:

$$V_{Q\bar{Q}}(|\vec{R}|) = \lim_{T \to \infty} \log \left(\frac{W(\vec{R}, T)}{W(\vec{R}, T+1)} \right)_{\substack{q \in \mathbb{Z} \\ q \in \mathbb{$$

Anisotropic $Q\bar{Q}$ potential

- The introduction of an external field $\mathbf{B} = B\hat{z}$ breaks explicitly the rotation symmetry of the lattice theory.
- We calculate $\langle W(\vec{r},T)\rangle$ separating Wilson loops with different spatial orientation.

$$W_{||} = W_Z = W(r\hat{z}, T)$$

$$W_{\perp} = W_{XY} = \left[W(r\hat{x}, T) + W(r\hat{y}, T)\right]/2$$

• The obtained potentials $V_{||}$ and V_{\perp} are different

Anisotropic $Q\bar{Q}$ potential

We fit the potential for the different orientations, using the Cornell parametrization:

$$aV(an\hat{d}) = \hat{c}_d + \sigma_d n + \frac{\alpha_d}{n}$$

We define the ratios:

$$R^{\mathcal{O}_d} = \frac{\mathcal{O}_d(|e|B)}{\mathcal{O}_d(|e|B=0)} \quad \text{ where } \quad \mathcal{O}_d = \hat{\sigma}_d, \ \alpha_d$$

We fit the data with: $R^{\mathcal{O}_d} = 1 \! + \! A^{\mathcal{O}_d} (|e|B)^{C^{\mathcal{O}_d}}$

Obs		A^{σ_d}	C^{σ_d}	χ^2/dof
σ_z		-0.34(1)	1.5(1)	0.92
σ_{xy}	,	0.29(2)	0.9(1)	1.14

Obs.	A^{α_d}	C^{α_d}	χ^2/dof
α_z	0.24(3)	1.7(4)	0.32
α_{xy}	-0.24(3)	0.7(2)	1.53

イロト イ押ト イヨト イヨト

Conclusions

- The QCD medium behaves as a paramagnet in all the explored temperatures.
 - \triangleright Weak magnetic activity in the confined phase, while the magnetic susceptibility increase sharply across $T_c\approx 150-160$ MeV.
 - ▷ The QCD medium has linear response up to $eB \approx 0.2$ GeV².
 - ▷ The magnetic contribution to the pressure is 10 50% in the range of fields expected at LHC, $0.1 0.2 \text{ GeV}^2$.
- Anisotropic $Q\bar{Q}$ potential
 - String tension decrease (increase) in the direction parallel (transverse) to the magnetic field, viceversa for the Coulomb term.
 - ▷ Anisotropy observed for $eB \gtrsim 0.2 \text{ GeV}^2$

Future studies:

- Determination of higher order terms \rightarrow relevant for cosmological models, where $eB \sim 1 \text{ GeV}^2$. Also c quark contributions can be relevant at higher temperatures.
- Heavy meson spectrum modification. Study of anisotropies at finite T → Relevant in heavy ion collisions.

BACKUP

Backup

 For small field and a linear, homogeneous, isotropic medium, the magnetization is proportional to the field:

$$\mathbf{M} = \tilde{\chi} \frac{\mathbf{B}}{\mu_0} = \chi \mathbf{H}$$

where B total field, $\mathbf{H} = \frac{\mathbf{B}}{\mu_0} - \mathbf{M}$ external field, and $\chi = \frac{\tilde{\chi}}{1-\tilde{\chi}}$.

In the small field limit we can use:

$$\Delta f = \int \mathbf{H} d\mathbf{B} \ \to \Delta f_r = -\int \mathbf{M} d\mathbf{B} \approx -\frac{\tilde{\chi}}{\mu_0} \int \mathbf{B} d\mathbf{B} = -\frac{\tilde{\chi}}{2\mu_0} \mathbf{B}^2$$

- Our simulations are QED quenched, no backreaction from the medium → B coincides with the external field added to the Dirac operator.
- QED quench does not affect the $\tilde{\chi}$ measure. However, adding the backreaction of the medium increase Δf_R by a factor $1/(1-\tilde{\chi})^2 \rightarrow$ Irrelevant a posteriori.

Backup

To get $\Delta f(T, b)$ we measured:

$$\mathcal{M} = \frac{\partial \log Z}{\partial b} = -\left\langle \mathsf{Tr}\left(M^{-1}\frac{\partial M}{\partial b}\right)\right\rangle_{b}$$

- B no more quantized \rightarrow Oscillations due to Dirac string.
- Numerical integration over \mathcal{M} spline interpolations $\rightarrow \Delta f$

•
$$\Delta f(B_k, T) \approx \frac{1}{2}c_2(T)B_k^2$$
. We fit:
 $f(b,T) - f(b-1,T) = \int_{b-1}^b \mathcal{M}(B,T)dB$

using:

$$c_2(T)[b^2 - (b-1)^2] = c_2(T)(2b-1)$$

• $c_2(T)$ determined from linear fit coefficient. Then:

$$\tilde{\chi}(T) = -\frac{e^2 \mu_0 c}{18\hbar\pi^2} L^4 c_2(T)$$

うくぐ

Backup

• Temperature: [Zhao and Rapp, '11] Assumption for the deconfinement temperature: $T_c\simeq 170~{\rm MeV}$

Т	RHIC at 200 GeV	LHC at 2.76 TeV
$T > 2T_c$	-	$\tau_f < \tau < 1 fm/c$
$T_c < T < 2T_c$	$\tau_f < \tau < 3 fm/c$	$1fm/c < \tau < 6fm/c$
$T = T_c$	$3fm/c<\tau<5fm/c$	$6fm/c<\tau<9fm/c$

Magnetic Field:

eB time evolution @ RHIC for Au - Au collisions for two values of $\sqrt{s_{NN}}.$

As the collision energy increases the magnetic field increases, but it gets more shrinked in time.

[Skokov, Illarionov and Toneev, '09]

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э