

Study of Cosmic Ray Electrons with the Large Area Telescope

> Alberto Manfreda albertom@pi.infn.it

Pisa, June 30, 2015

COSMIC RAYS

Discovered by Victor Hess in 1912 at balloon experiment:

"Extremely penetrating radiation coming from above the atmosphere"

- Actually he observed secondary particles.
- Primary particles:
 - neutral: ν , γ
 - charged: p, p̄, e[±], α,
 heavier atomic nuclei

COSMIC RAYS

COSMIC RAYS

COSMIC-RAY ELECTRONS AND POSITRONS

A peculiar component of cosmic rays observed at Earth (Note: from now on 'electrons' $\rightarrow e^+ + e^-$)

- ► Rapid energy loss:
 - Synchrotron radiation on galactic magnetic fields
 - Inverse Compton (IC) scattering on interstellar radiation field

 $rac{dE}{dt} \sim rac{E^2}{m^2}$ (ultrarelativistic limit)

High-energy electrons reaching the Earth are generated 'near' us.

- ► At 1 TeV:
 - livetime $\simeq 10^5$ year amma-ray
 - typical diffusion distance is $\simeq 0.6 0.9$ kpc
- Possibly showing the effect of near sources:
 - deviation from PL, anisotropies

PREVIOUS MEASUREMENTS

• Power law of index \sim (-3)

- Some tension between different experimental measurements
- Spectral cut-off observed by H.E.S.S above 1.5 TeV

FERMI SPACE OBSERVATORY

- Launch in June 2008
- \blacktriangleright Altitude : $\sim 565~{\rm km}$
- Inclination : \sim 25.6 deg
- Period : ~ 1.5 h
- Survey mode : rocking between the northern and the southern hemispheres every orbit
- Full sky is observed every ~ 3 h
- 2 instruments: LAT and GBM, covering different energy ranges

THE LARGE AREA TELESCOPE

- Overall modular design
- ▶ 4×4 array of identical towers (each one including a tracker and a calorimeter module)
- Tracker surrounded by and Anti-Coincidence Detector (ACD)

- 18 planes of silicon strip detectors
- W foils to enhance conversion probability: 1.5 radiation lengths on-axis
- 10k sensors, 80 m² of silicon active area, 1M readout channels

A few numbers

- \blacktriangleright ~ 1.5 imes 1.5 m² area
- \blacktriangleright \sim 3000 kg mass
- \blacktriangleright ~ 650 W power absorbed

LAT BASIC FUNCTIONING

- Typical γ-ray events start with conversion into e⁺e⁻ pair in the tracker
- Subsequent e.m. cascade registered by the CAL below
- For electrons the first interaction is typically bremsstrahlung, otherwise they are similar

- ► Each crystal hit gives (*x*, *y*, *z*) coordinates in the CAL
- Moment analysis and fit to the shower profile to estimate energy

WHY AN UPDATE?

- 6 years of data:
 - several 10^7 events above 20 GeV, ~ 10 k events above 1 TeV
 - sistematic dominated in the whole accessible energy range
- Improved event reconstruction and selection (Pass 8):
 - Energy reconstruction algorithm updated, now working up to 3 TeV
 - Better handling of "ghost" events thanks (mainly) to clustering in the CAL
- Ghost events: remnants of particles passing through the LAT a few μs before or after the real event

Gamma-ray Space Telescope

DEFINITION

We compute the *differential intensity* $\mathcal{I}_i(E)$ in the *i*-th bin (centered at energy E) as:

$$\mathcal{I}_i(E) = rac{R_{evt,i}(E,s) - R_{bkg,i}(E,s)}{\mathcal{A}_i(E,s)}$$

- $R_{evt,i}(E,s)$ is the event rate after a given selection s.
- $R_{evt,i}(E,s)$ is the estimate background rate.
- $\mathcal{A}(E, s)$ is the Acceptance (or Effective Geometrical Factor): $\mathcal{A}(E,s) = \int A_{eff}(E,\theta,\phi,s) d\Omega$

Effective area:

 $A_{eff}(E, \hat{v}, s)$: product of the geometrical cross section of the detector, the efficiency of selection s and the interaction probability for an incoming particle with energy E and direction \hat{v} in the LAT reference system.

EVENT SELECTION

CR electrons selection:

- Trigger and event-quality cuts
- Removal of particles with Z > 1 (easy to tag by ionization in ACD and TKR)
- Main selection, using Classification Trees, for residual hadronic contamination rejection (protons).

Event quality:

- At least on successfully reconstructed track
- Path length greater than 8 X₀ in the CAL, removing evts close to the edges or not well reconstructed
- Minimum quality of direction reconstruction

CLASSIFICATION TREES

Classification Tree:

- Multivariate analysis technique for event classification
- CT → sequence of binary split of the sample based on single-variable test
- Each terminal block ('leaf') is associated with a classification probability

Boosted Decision Trees (BDT):

- A whole forest of (hundreds of) 'small' trees
- Each tree derives from the previous, giving higher weights to misclassified events
- The final probability is a weighted average of all the trees

SELECTION

- Example of input variables:
 - Chi-square of the shower three-dimensional fit
 - Shower transverse size in CAL
 - Time over Threshold signal averaged across the planes of the TKR (already used in pre-selection)
 - Hit density along the main track
 - The CT combines all the information!

PDG values of X_0 , λ , R_M for the CsI X_0 1.85 cm | 8.39 g \cdot cm⁻² R_M 3.8 cm 15.92 g · cm⁻² 38.04 cm | 171.5 g \cdot cm⁻² λ Hadronic shower EM shower

CT output

Classification Variable

- Normalization of Monte Carlo templates fitted to data in each energy bin.
- Normalization factor used in bkg estimation.

PERFORMANCE

- Working point is a trade-off between acceptance and contamination
- Contamination below 20% in the whole energy range

 10^{2}

2×10²

Acceptance [m² sr]

2.5

5

0.5

Pisa, June 30, 2015

 10^{3}

RESULTS

Current (and future) updates

- Low-energy part of the spectrum: need a dedicated simulation to take into account the effect of terrestrial magnetic field
- Finalizing the selection up to 3 TeV
- Look for anisotropies in their direction of arrival

Backup Slides

Gamma-ray Space Telescope

Removal of Z > 1 particles

- ► Two different measurements of charge through ionization (~ Z²):
 - Energy released in the ACD tile
 - Time-Over-Threshold (ToT) signal averaged across the planes of the TKR
- Cut in the plane formed by these two quantities
- Contamination reduced to less than a few per cent (respect to protons)

