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What we will need

Before embarking on the investigation of the simplest possible kind
of black hole, we need some simple notions of:

general relativity;

quantum mechanics;

statistical mechanics.



The Jebsen-Birkhoff theorem

Two important results of Newtonian gravity:

At any point outside a spherical mass distribution, the grav.
field Φ depends only on the mass interior to that point.

Even if the mass interior is moving spherically symmetrically,
the grav. field Φ outside is constant in time.

A corresponding result in GR is the Jebsen-Birkhoff theorem (1921,1923):

The only vacuum, spherically symmetric gravitational field is
static.

⇒ The vacuum space-time external to a spherical mass of radius R
is necessarily the one described by the Schwarzschild metric (1916).



The Schwarzschild metric

The Schwarzschild (or Schwarzschild-Droste) metric is:

ds2 = −
(
1− 2GM

c2r

)
c2dt2 +

1(
1− 2GM

c2r

) dr2 + r2dΩ2 (r > R)

where
dΩ2 ≡ dθ2 + sin2θ dϕ2

The coordinates t, r, θ, and ϕ are the coordinates used by an
observer at rest a great (≃ ∞) distance from the origin.

For convenience, let us define the quantity

rS ≡ 2GM

c2

as the Schwarzschild radius.



Real or apparent singularity?

From now on we will adopt units in which c = 1.
(
⇒ rS ≡ 2GM

)
Look at the Schwarzschild metric

(
v2 ≡ rS/r

)
:

ds2 = −
(
1− v2

)
︸ ︷︷ ︸

gtt

dt2 +
1

(1− v2)︸ ︷︷ ︸
grr

dr2 + r2dΩ2

It seems that something worrying happens at r = rS :

gtt vanishes and grr blows up.
And vice versa for gtt = 1/gtt and g

rr = 1/grr.

Is the Schwarzschild radius a physical singularity or not?

There are many ways to see that. For example, let us make a
change of coordinates (we are always free to do so).



Painlevé-Gullstrand coordinates (1921)

ds
2

= −
(
1 − v

2)
dt

2
+

1

(1 − v2)
dr

2
+ r

2
dΩ

2
v
2 ≡

rS

r

Let dt = dT − h(r)dr. Then the metric reads

ds2 = −(1−v2) dT 2+2h(1−v2) dTdr+

[
−(1−v2)h2+

1

1− v2

]
dr2+r2dΩ2

Choose h(r) s.t. the coefficient of dr2 equals 1:[
−(1− v2)h2 +

1

1− v2

]
= 1 ⇒ h =

v

1− v2

With this choice of h(r), the metric becomes

ds2 = −dT 2 +

(
dr +

√
rs
r
dT

)2

+ r2dΩ2

⇒ In the (T , r, θ, ϕ) coordinates, nothing blows up at r=rS .
⇒ In contrast, r = 0 is a real singularity (cloaked by the event horizon).



A way to define a black hole

Consider a photon (ds = 0) moving along a certain radial direction
toward us (fixed θ, ϕ). The rate at which the radial coordinate of
the photon changes (i.e. the apparent speed of light) is:

ds2 = 0 = −
(
1− rS

r

)
dt2 +

(
1− rS

r

)−1

dr2 +����
r2dΩ2

⇒ vr ≡
dr

dt
=

(
1− rS

r

)
Note that as r → rS , vr → 0 (light is frozen in time).
A photon at r = rS will never reach us.

The spherical surface at r = rS is called event horizon.

A star (say, a massive one: M ≳ 10M⊙) which collapses down
within its Schwarzschild radius is called a black hole.



Is a black hole really “black”?

Image from Wikipedia

To answer this question we will make use of a nice correspondence
between quantum mechanics and statistical mechanics...



Wisdom from Quantum Mechanics

In quantum mechanics, given a Hamiltonian Ĥ and a quantum state
which we want to evolve after time T , what we need is:

Initial state |I⟩
Final state |F ⟩

Evolution operator e−
iĤT
ℏ

⇒ Probability amplitude: Z = ⟨F | e−
iĤT
ℏ |I⟩



Wisdom from Statistical Mechanics

Consider a system with a Hamiltonian s.t.

Ĥ |λ⟩ = Eλ |λ⟩

The probability of the system being in some particular state |λ⟩ with
energy Eλ at a temperature T is given by the Gibbs distribution
(β ≡ 1/kBT )

pλ =
e−βEλ

Z

where Z is the partition function of the system defined as a sum
over states:

Z ≡
∑
λ

e−βEλ =
∑
λ

⟨λ| e−βĤ |λ⟩ = Tr
[
e−βĤ

]



Any resemblance?

Look at these two formulas:

Z = ⟨F | e−
iĤT
ℏ |I⟩

Z =
∑
λ

⟨λ| e−βĤ |λ⟩

Let us naively ask: is there any correspondence between Z and Z ?

To have Z ↔ Z, we may perform the following computational trick:

T → −iβℏ (make time imaginary)

|I⟩ = |F ⟩ = |λ⟩ (force every state to go back to itself)

sum over |λ⟩ (do it for any state)

⇒ Time becomes somehow cyclic.

⇒ β is equal to this recurrence period.



Back to the Schwarzschild spacetime

ds
2

= −
(
r − rS

r

)
dt

2
+

(
r

r − rS

)
dr

2
+ r

2
dΩ

2

Consider a particle (or a photon) propagating near outside the
horizon (r ≃ rS + ϵ):

ds2 ≃ −
(
r − rS
rS

)
dt2 +

(
rS

r − rS

)
dr2 + r2SdΩ

2

Now we will make three simple changes of variables.

(1) Change the “radial” coordinate from r to ρ:

ρ2 = 4rS(r−rS) ρ dρ = 2rS dr

(r − rS) dρ
2 = rS dr

2

The spacetime near the horizon becomes:

ds2 = − ρ2

4r2S
dt2 + dρ2 + r2S dΩ

2



Move to Euclidean space

ds
2

= −
ρ2

4r2
S

dt
2
+ dρ

2
+ r

2
S dΩ

2

(2) Switch to “imaginary” time:

t = −itE dt = −idtE

⇒ ds2 = ρ2

4r2S
dt2E + dρ2 + r2S dΩ

2

(3) Rescale the variable tE :

tE = 2rSψ dtE = 2rS dψ

Thus, the metric near the horizon reads:

ds2 = dρ2 + ρ2 dψ2︸ ︷︷ ︸
2d plane metric:
radius ρ ∈ [0,∞]
angle ψ ∈ [0, 2π]

+r2S dΩ
2



Hawking Temperature

ds
2

= dρ
2
+ ρ

2
dψ

2
+ r

2
S dΩ

2

⇒ We got a cyclic time tE with a recurrence period of 2π:

t = −itE = −i2rSψ −→ −i2rS(2π) = −i 4πrS
In other words, we got a periodicity:

t→ −i(4πrS)
But at the very beginning the correspondence Z ↔ Z gave us

T → −iβℏ
We are tempted to identify βℏ = 4πrS :

⇒ kBTH
ℏ

=
1

4πrS
=

1

4π(2GM)
=

1

8πGM

Restoring the proper units of c:

TH =
ℏc3

8πkBGM



A simple heuristic physical interpretation

Image from c⃝NewScientist



Black-hole evaporation

rS =
2GM

c2
TH =

ℏc3

8πkBGM

The black holes of classical general relativity last forever.

However, QFT (in curved spacetime) calculations show that the
outgoing particles have a thermal black-body spectrum.

Since a black hole radiates energy by Hawking radiation, energy
conservation implies that it will lose mass.
As the black hole becomes lighter it becomes hotter.

Let us ignore all other processes other than the Hawking radiation:

dM

dt
c2︸ ︷︷ ︸

[E]

[T ]

= − 4πr2S︸ ︷︷ ︸
[L]2

σT 4
H︸︷︷︸

[E]

[L]2[T ]

⇒ tev ∝M3

⇒ Small black holes evaporate much faster than very massive ones.
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