Tunable Fabry-Pérot cavities for the interrogation of Fiber Bragg Gratting sensors

June, 5th 2015, Pisa University

Matthieu Gosselin, PhD cyclo XXX

- Fiber Bragg Gratting
- Light filter : Fabry-Pérot Cavity
- Liquid crystal filters
- Electro mechanic filters
- Conclusion

- Fiber Bragg Gratting
- Light filter : Fabry-Pérot Cavity
- Liquid crystal filters
- Electro mechanic filters
- Conclusion

Reflected wavelength depends on:

- The refractive index
- •The number of layers

•The thickness of the layers

Ian Johnson, David Webb Aston University Birmingham, UK

Need for a tunable light source

Main criteria

- Spectral range
- Frequency
- Resolution

But also :

• Price

...

• Ease to build

Find a compromise

- Fiber Bragg Gratting
- Light filter : Fabry-Pérot Cavity
- Liquid crystal filters
- Electro mechanic filters
- Conclusion

Fabry-Pérot Cavity

Constructive interferences between two partially reflective surfaces

Passing wavelengths :

n : refractive index intra-cavityL : cavity thicknessk : integer number

$$FSR = \frac{\lambda^2}{2nL}$$

$$Finesse = \frac{FSR}{FWMH}$$

• The smaller the thickness, the higher the FSR

•The higher the reflectivity, the higher the finesse

Fabry-Pérot Cavity

• Large source is cheaper

• Filter are cheap to build

• Analyzing a time response and not a spectral response

=> Faster than spectrometer
=> Need to perfectly know
the response of the tunable
filter

Tuning the passing wavelengths:

$$\lambda_k = \frac{2nL}{k}$$

=> Changing the refractive index : liquid crystal properties
=> Changing the length of the cavity : electro-mechanics forces

- Fiber Bragg Gratting
- Light filter : Fabry-Pérot Cavity
- Liquid crystal filters
- Electro mechanic filters
- Conclusion

Structure between the solid and the liquid

Depending on its polarization the light can see different refractive index : ordinary and extraordinary

By applying a voltage, we can rotate the molecule and modify the extraordinary refractive index

Voltage

Results : frequency

Electric time : 300 µs

Tek	n	🖪 Ready	(M Pos:	120.0,us	TRIGGER				
		+ +				Type Edge				
2)					•	Source				
1+ <mark></mark>						Slope				
			No. And No.			Mode				
				1	******	Coupling				
CH1 20.	0mV CH2	5.00V N	4 100,us	CH2 / 320mV						

Elastic time : 2 ms

=> Limited by the elastic relaxation, f ~ 500Hz

Improvements :

PSLC : Polymer Stabilize Liquid Crystal, polymer structure to constraint the molecule and improve the elastic time

Best frequency obtained : 7kHz

Results : spectral range

 $\frac{\Delta\lambda}{\lambda} = \frac{\Delta n}{n_e}$

Depends on the birefringence of the liquid crystal

Results : resolution

$$Finesse = \frac{FSR}{FWMH} \approx \frac{\pi R^{1/2}}{1-R}$$

• Losses intra cavity due to the absorption of the liquid crystal, lower finesse

• Losses increased with the polymer structure

With PSLC : 2nm With pure liquid crystal : 500 µm

Filters characteristics

Cell	E44 PSLC	E44	MLC21-57
Spectral range (nm)	70	145	100
Frequency (kHz)	7	0.5	1
Resolution (nm)	2	1	0.5
Losses	Medium	Low	Low

=> Different filters for different applications

Results in the final set-up

Increasing the voltage:

If the detection time of the peak changes, the corresponding FBG is under constraint

=> 1nm difference beween FBG1 et FBG2 can be distinguished at 200hz

200 Hz

1 Hz

- Fiber Bragg Gratting
- Light filter : Fabry-Pérot Cavity
- Liquid crystal filters
- Electro mechanic filters
- Conclusion

Glass membrane resonance

 \vec{E}

Electrostatic force between the two membranes

Spectral range:

$$\frac{\Delta \lambda}{h} = \frac{\lambda * \Delta h}{h}$$

Electro-static cells

Thin glass membrane

Electrode : ITO (Indium Tin Oxide) good electrical conductivity and optical transparency

Gold mirror

<u>Glue</u>

<u>Resin layer</u> to avoid short circuits

Thick glass substrate

Glass membrane resonance

- E Young modulus

- v Poisson coefficient
- *d* Membrane diamater
- *h* intracavity thickness
- *P* electrostatic pressure

Membrane displacement

$$W = -\frac{P * R^4 * 3(1 - v^2)}{16 * E * h^3}$$

Resonance frequency (fundamental mode)

$$\omega i = 2\pi * Ai * \left(\frac{h}{d^2}\right) * \sqrt{\frac{E}{\rho(1-\nu^2)}}$$

Membrane resonance - Results

Membrane thickness (µm)	Spectral range (nm)	Resonance frequency (kHz)
105	120	20
215	15	18.4
550	5	13.7

• Results seems to be better but the excited mode depends on many things which make the manufacturing difficult

• Similar characteristics to what can be done with others technologies like MEMS but less expensive

• More absorption in gold than in dielectric mirror, lower resolution

• No possibilities of miniaturization

- Fiber Bragg Gratting
- Light filter : Fabry-Pérot Cavity
- Liquid crystal filters
- Electro mechanic filters
- Conclusion

Conclusion

Not replacing the existing interrogators

Crystal liquid filters

 easy to build and cheap
 characteristics can be easily adjust

 Electro-static filters much higher frequencies more difficult to build less resistant no miniaturization

Thank you for your attention! Any questions?

Back up slides

Ak extraordinaire (nm)	28,050	14,025	9,350	7,013	5,610	4,675	4,007	3,506	3,117	2,805	2,550	2,338	2,158	2,004	1,870	1,753	1,650	1,558	1,476	1,403
λk ordinaire (nm)	25,670	12,835	8,557	6,418	5,134	4,278	3,667	3,209	2,852	2,567	2,334	2,139	1,975	1,834	1,711	1,604	1,510	1,426	1,351	1,284
×	1	2	ŝ	4	5	9	7	ω	6	10	11	12	13	14	15	16	17	18	19	20

