The structure of proteins

Proteins modeling

Minimalist models

Conclusions

Facoltà di Fisica, scuola di dottorato A.A. 2014-2015

Università di Pisa

Simulation of proteins: Coarse Graining to minimalist models

Andrea Giuntoli

The structure of proteins

2 Proteins modeling

3 Minimalist models

Conclusions

Why should we study proteins? A wide spectrum of different functions

Proteins: finely structured, highly specialized biomolecules.

Typical size: 1 - 10 nmFunctions:

- Catalysis (enzymes)
- Regulatory
- Structural
- Protection
- Energetics

Hierarchic organization: primary, secondary, tertiary and quaternary structures

Conclusions

Primary structure

- Amino acids: the basic elements of a protein.
- Chirality of the central carbon atom (C α).
- Connection through the peptide bond: directionality of the chain.

Primary structure Peptide bond

 Φ and Ψ dihedrals: a complete set of degrees of freedom for the backbone

Secondary structure

The secondary structure is determined by the (Φ,Ψ) values along the chain.

- Main "uniform structures": helices and extended structures (beta-strand and beta-sheets).
- Each uniform structure is characterized by a given (Φ, Ψ) value.

Conclusions

Secondary structure Ramachandran Plot

- Ramachandran Plot: mathematical description of the secondary structure in the Φ - Ψ plane.
- densely-packed areas: main uniform structures.
- Sparse areas: "forbidden regions" due to sterical hindrances.

Conclusions

Why different models? space and time scales of interest

Conclusions

How much accuracy do we need? resolution of the models

How to build a model:

- definition of the degrees of freedom
- description of the interactions
- dynamics of the system

Simplification is needed in order to reach longer simulation times: atomistic and Coarse Grained models.

Conclusions

Coarse Grained models Definition of the degrees of freedom

New variables $Q_I = Q_I(\{R_i\} \in B_I)$

Classification based on the number and position of the beads per amino acid.

Minimalist models: 1 bead placed on the $C\alpha$.

Coarse Grained models Force Field in the minimalist models

Parametrization methods Boltzmann inversion

Parametrization based on the distribution of internal variables, assuming thermal equilibrium.

$$P(Q_1,...Q_n) = P_0(Q_1,...,Q_n) \exp[-(U(Q_1,...,Q_n))/kT]$$

$$\Psi$$

$$U(Q_1,...,Q_n) = -kT \ln\left(\frac{P(Q_1,...Q_n)}{P_0(Q_1,...Q_n)}\right)$$

Ш

 P_0 distribution of the non-interacting system.

In case of independent variables:

$$P(Q_i) = P_0(Q_i) \exp[-(U(Q_i))/kT] \Longrightarrow U(Q_i) = -kT \ln\left(\frac{P(Q_i)}{P_0(Q_i)}\right)$$

Mapping to the minimalist models how to prevent loss of information

Analytical mapping: $(\Phi, \Psi) \leftrightarrow (\theta, \phi)$.

- mapping information from the atomistic resolution level
- helpful tool to approach the PBRP (Protein Backbone Reconstruction Problem)
- bottom-up approach to the parametrization problem

Conclusions

Mapping to the minimalist model the analytical mapping

 $\theta_i(\Phi_i, \Psi_i) = \arccos[\cos \tau (\cos \gamma 1 \cos \gamma 2 - \sin \gamma 1 \sin \gamma 2 \cos \Phi_i \cos \Psi_i)$ $- \sin \gamma 1 \sin \gamma 2 \sin \Phi_i \sin \Psi_i +$ $\sin \tau (\cos \Psi_i \sin \gamma 2 \cos \gamma 1 + \cos \Phi_i \cos \gamma 2 \sin \gamma 1)]$

$$\begin{split} \phi_i(\Phi_i, \Psi_i, \Phi_{i+1}, \Psi_{i+1}) &= 180^\circ + \lambda_2(\Phi_i, \Psi_i) + \lambda_1(\Phi_{i+1}, \Psi_{i+1}) \\ &\simeq 180^\circ + \Psi_i + \Phi_{i+1} + \gamma 1 \sin \Phi_i + \gamma 2 \sin \Psi_{i+1} \end{split}$$

Mapping the Ramachandran Plot

Uniform structures: $\Phi_i = \Phi_{i+1}, \ \Psi_i = \Psi_{i+1}$ Mapping $2 \rightarrow 2$: $(\Phi, \Psi) \rightarrow (\theta, \phi)$ • chirality: $\theta(\Phi, \Psi) = \theta(-\Phi, -\Psi)$ $\phi(\Phi, \Psi) = -\phi(-\Phi, -\Psi)$ o directionality: $\theta(\Phi, \Psi) = \theta(\Psi, \Phi)$

 $\phi(\Phi, \Psi) = \phi(\Psi, \Phi)$

Conclusions

The Jacobian Matrix mapping the density distributions

 $J(\Phi, \Psi) = egin{bmatrix} rac{\partial heta(\Phi, \Psi)}{\partial \Phi} & & rac{\partial heta(\Phi, \Psi)}{\partial \Psi} \\ rac{\partial \phi(\Phi, \Psi)}{\partial \Phi} & & rac{\partial \phi(\Phi, \Psi)}{\partial \Psi} \end{bmatrix}$

Formal description of:

- bijective regions of the mapping
- density distributions in the (θ, ϕ) plane

 $\rho(\theta,\phi) = |\det J^{-1}(\theta,\phi)| \to \overline{f}(\theta,\phi) = f(\Phi(\theta,\phi),\Psi(\theta,\phi))\rho(\theta,\phi)$

Unstructured case Symmetries of the system and variables distribution

Generalization of the mapping: $(\Phi_i, \Psi_i, \Phi_{i+1}, \Psi_{i+1}) \rightarrow (\theta_-, \theta_+, \phi)$ Symmetries:

The Jacobian of the mapping is not defined. $\rho(\theta_-, \theta_+, \phi)$ derived numerically.

Conclusions

Unstructured case Three and two variable correlations

Three variables distribution $\rho(\theta_-, \theta_+, \phi) \rightarrow U^T = -kT \ln \rho$

Two variable correlations vanish in the general case

Conclusions

What have we learned? an eye turned to the future

Results of the new approach

- More insight on the minimalist models
- Universality features
- Proposal of a new normalization potential U^T

What now?

- Extension to non-uniform Ramachandran Plots
- Implementation of U^T in simulations
- Comparison with experimental results

Thanks for your attention, any question is welcomed!

"So Long, and Thanks for All the Fish"

Side Chains

Conclusions

Hydrogen bonds in secondary structures

Conclusions

Atomistic models Degrees of freedom and interactions

- "Bonded" and "non bonded" interactions.
- Empiric functional form depending on many parameters (up to $\sim 10^3)$ \rightarrow parametrization problem.

$$E = \sum_{bonds} k_b (d - d_0)^2 + \sum_{angles} k_\theta (\theta - \theta_0)^2 + \sum_{dihedrals} k_\phi (1 + \cos(n\phi + \delta)) +$$
$$+ \sum_{\substack{non-bonded \\ pairs}} \epsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^6 \right] + \frac{1}{4\pi\epsilon_0} \frac{q_i q_j}{r_{ij}}$$

C on clusion s

Planar configurations

- $(\Phi, \Psi) = (0, 0)$ $(\theta, \phi) = (75.6, 180)$
- $(\Phi, \Psi) = (180, 180)$ $(\theta, \phi) = (105, 0)$
- $(\Phi, \Psi) = (0, 180)$ $(\theta, \phi) = (117, 0)$
- $(\Phi, \Psi) = (180, 0)$ $(\theta, \phi) = (146.4, 180)$
- $(\Phi, \Psi) \simeq (75, 75)$ $(\theta, \phi) = (103, 0)$

Conclusions

Symmetries Chirality and directionality

Physical symmetries:

- chirality of the structure
- chain directionality

Related mathematical symmetries:

- $\theta(\Phi, \Psi) = \theta(-\Phi, -\Psi)$ $\phi(\Phi, \Psi) = -\phi(-\Phi, -\Psi)$
- $\theta(\Phi, \Psi) = \theta(\Psi, \Phi)$ $\phi(\Phi, \Psi) = \phi(\Psi, \Phi)$

λ functions

$$\tan \lambda_1(\Phi, \Psi) = [(-\sin \tau \cos \gamma 2 \sin \Phi + \cos \tau \sin \gamma 2 \cos \Psi \sin \Phi - \sin \gamma 2 \cos \Phi \sin \Psi) / (\cos \tau \cos \gamma 2 \sin \gamma 1 + \sin \tau \sin \gamma 2 \sin \gamma 1 \cos \Psi - \sin \tau \cos \gamma 2 \cos \gamma 1 \cos \Phi + \cos \tau \sin \gamma 2 \cos \gamma 1 \cos \Phi \cos \Psi + \sin \gamma 2 \cos \gamma 1 \cos \gamma 1 \sin \Phi \sin \Psi)]$$

$$\tan \lambda_2(\Phi, \Psi) = [(-\sin \tau \cos \gamma 1 \sin \Psi + \cos \tau \sin \gamma 1 \cos \Phi \sin \Psi - \sin \gamma 1 \cos \Psi \sin \Phi)/ (\cos \tau \cos \gamma 1 \sin \gamma 2 + \sin \tau \sin \gamma 1 \sin \gamma 2 \cos \Phi - \sin \tau \cos \gamma 1 \cos \gamma 2 \cos \Psi + \cos \tau \sin \gamma 1 \cos \gamma 2 \cos \Psi \cos \Phi + \sin \gamma 1 \cos \gamma 2 \sin \Psi \sin \Phi)]$$

Conclusions

ϕ linear-complete differences

4:1 detailed analysis

C on clusion s

3D plots, uniform case $\gamma_1 = \gamma_2$

$\gamma 1 = \gamma 2$: topology of the mapping

- ₽ . 1,2 3.4 Φ (a) (b) (c) θ (d) (f) (e)
- Φ and Ψ cyclic \rightarrow toroidal topology of the (Φ, Ψ) plane. Adding the symmetry $\Phi \leftrightarrow \Psi$: Möbius strip in the (θ, ϕ) .

$\gamma 1 = \gamma 2$: backmapping and tranformation potential

Conclusions

3D plot $\gamma 1 \neq \gamma 2$

Broken symmetry $\Phi\leftrightarrow \Psi$

detJ zeroes in the γ parameters space

det J = 0 in the (θ, ϕ) plane varying γ parameters.

Reduction of the 4:1 mapping region when $\delta\gamma = \mid \gamma 1 - \gamma 2 \mid \text{grows}$

Non uniform case: two variable slices

Non uniform case: single variable

Almost uniform ϕ distribution.

Non trivial θ .

Conclusions

ϕ linear-complete differences $_{\rm unstructured\ case}$

Conclusions

ϕ linear-complete differences $_{\rm zoom}$

