

High Field Plasmonics

Luca Fedeli

Pisa, 22/10/2014

Supervisor: Dr. A.Macchi

Luca Fedeli

Introduction

Ultra-high intensity laser-matter interaction

Laser systems

A pair of gratings disperse the spectrum and stretches the pulse by a factor of a thousand of a thousand of a molification Power amplification Power amplifiers A second pair of gratings reverses the dispersion of the first pair, and recompreses the pulse. **Peak power** up to 1 PW (10 PW foreseen in the near future)

Intensity up to 10²² W/cm²

Pulse duration of 10s fs

Pulse contrast of $10^{12} - 10^{9}$

Pulse waist of few μm

Luca Fedeli

Ultra-high intensity laser-matter interaction Applications

Electron acceleration, secondary X-ray sources...

Ion acceleration

High Harmonic Generation, attoscience...

Numerical tools

Particle in Cell Simulations

Vlasov equation (+Maxwell eq.) $\partial_t f + v_x \cdot \nabla_x f + q(\vec{E} + \frac{\vec{v}}{c} \times \vec{B}) \cdot \nabla_{px} f = 0$

EM fields on a grid

piccante

- Fully relativistic 3D PIC code
- Open source (GPLv3 license) https://github.com/ALaDyn/piccante
- Complex target geometries
- Multiple laser pulses
- Radiation friction effects—
- Massively parallel -

Luca Fedeli

piccante is maintained by A.Sgattoni, <u>L.Fedeli</u>, S.Sinigardi, A.Marocchino

Surface Plasmon Polaritons

Collective e- excitations at the surface of a metal or a plasma

Dispersion relation

$$k_{SPP}(\omega) = \frac{\omega}{c} \sqrt{\frac{1 - \omega_p^2 / \omega^2}{2 - \omega_p^2 / \omega^2}}$$

EM-SPP coupling?

 $\frac{\omega}{c}\sin(\theta) = k_{SPP}(\omega) \text{ no solution if } \omega < \omega_p$ Several coupling schemes exist

SPP in high intensity laser-plasma interaction

Target is ionized in one laser cycle (no dielectrics)

EM-SPP coupling with gratings

$$\frac{\omega}{c}\sin(\theta) = k_{SPP}(\omega) \pm n\frac{2\pi}{d}$$

Relativistic regime (MeV e- in one laser cycle)

No complete theory exists in the literature for relativistic Surface Plasmon Polaritons

High field plasmonics: enhanced laser-plasma coupling with structured targets

Introduction

PRL 111, 185001 (2013)

PHYSICAL REVIEW LETTERS

week ending 1 NOVEMBER 2013

Evidence of Resonant Surface-Wave Excitation in the Relativistic Regime through Measurements of Proton Acceleration from Grating Targets

• Exp. performed at CEA-Saclay

- Mylar flat foils and grating targets (30° resonance) were tested
- Enhancement in ion cut-off energy and laser absorption for gratings at resonance
- Good agreement between exp. and simulations

New simulation campaign

All the simulations perfomed at FERMI-CINECA with piccante

Parametric scan to find better targets

Simulation results

Grating target (45° resonance) 45° pulse incidence

All the simulations perfomed at FERMI-CINECA with piccante

Flat target 45° pulse incidence

Simulation results All the simulations perfomed at FERMI-CINECA with piccante $t=70\;\lambda/c$, $\delta_{grat}=0.25\;\lambda$ 10 Ion acceleration 90° PROTONS: max energy [MeV] 9 8 150° 7 6 **0**° 5 -150° 4 e- emission 3 2 e- angular spectrum 1 1000 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 θp/Np 0 Angle [deg] 100 G00 G45 G20 G10 G30 FLT 10 70 90 110 150 -1800 -90 180 θ

30F (flat target) _____ 30G45(off resonance) _____ 30G30(resonance) _____

Experimental campaing: setup

Facility: CEA-Saclay (France) SLIC 100 TW laser facility (pulse duration of 25 fs) Diagnostics:

- Thomson parabola (for ions)
- Radiochromic film ring
- Electron spectrometer **NEW!**

Targets:

- \bullet Mylar, 13 $\mu m,~G45^\circ,~G30^\circ$, $G15^\circ$ and flat
- \bullet SiN, 1 $\mu m,\,G45^\circ$ and flat

Experimental campaing: preliminary results Experimental activity is still ongoing this week.

Flat target

hole shape for resonant grating target is a strong evidence in favour of plasmonic effects

e- spectrometer: very high signal for gratings at resonance along target tangent

good agreement with simulations

Thompsonparabola:dataanalysis isstill ongoing

Rayleigh Taylor-like instability in Radiation Pressure acceleration scenarios

10

5

 $\langle z \rangle$

-5

-10

-15

a)

 y/λ

c)

 y/λ

-2

-4 L

-2

RT instability in Radiation Pressure Acceleration

Radiation Pressure Acceleration (RPA)

b)

×/お

10

d) ⁶⁰

40

20

 $|\tilde{x}|_e$

 n_e/n_c

 n_i/n_c

20

= 20

5

 x/λ

Very high intensity laser on thin targets. Laser pressure directly displaces electrons. lons are dragged by longitudinal E field.

Theoretical model of rippling growth in RPA

 $|\tilde{x}|_e$

20

 $\frac{\frac{D}{\tilde{x}}}{10}$

 e^{-} _____

q/k

t = 20

Expected resonance at q = k and cut-off at $q = 2k (k = 2\pi/\lambda_{Laser})$

Simulations confirm theoretical prediction

RTI in RPA scenarios

A.Sgattoni, S.Sinigardi, <u>L.Fedeli</u> , F.Pegoraro, A.Macchi

Plasmonic Waveguides

Work-plan for the third year

Plasmonic Waveguides

Very promising application of SPP in conventional plasmonics

For EM waves, focalization beyond diffraction limit is impossible: for a waveguide, $d>\lambda/2$ to allow wave propagation.

SPP can overcome the diffraction limit. Coupling of EM waves to SPPs allows **nanofocusing** and **giant field enhancement** (~100x).

Several schemes in the literature

Tapered guides (see Park et al., NatPhoton 2011)

> **Tapered tips** (see Gramotnev et al., Nature 2013)

Plasmonic Waveguides

Can we exploit some of these schemes in High Field Plasmonics?

In this simulation, propagation ^{*}beyond the diffraction limit was achieved, but energy concentration was not satisfactory.

Achieving significant field enhancement in High Field Plasmonics could be very interesting

Luca Fedeli

Additional research activity

Additional research activity

Filamentation Instability in relativistic counter-streaming pair plasmas.

Master thesis of M.D'Angelo. Paper to be submitted soon Phase space dynamics after the breaking of a relativistic Langmuir wave in a thermal plasma

A. Grassi, <u>L. Fedeli</u>, A. Macchi, S.V. Bulanov and F. Pegoraro, EPJD 2014

END

Thank you for your attention

EM-SPP coupling with gratings

The system is symmetric for discrete translations along the grating.

Enhanced laser-plasma coupling with gratings

PRL 111,	185001	(2013)	РНҮ	ζS
----------	--------	--------	-----	----

IYSICAL REVIEW LETTERS

week ending 1 NOVEMBER 2013

Evidence of Resonant Surface-Wave Excitation in the Relativistic Regime through Measurements of Proton Acceleration from Grating Targets

RTI in RPA scenarios

Luca Fedeli