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Plan of the presentation

 Introduction on GW detectors

• notation and key quantities

 Motivations for studying non-stationary noise

• GW events validation and parameter estimation

 Developed tools

• Line tracker, cross-correlation and regression tools

 Example results

 Ongoing projects and perspectives
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Introduction:

Advanced gravitational wave detectors

Advanced gravitational wave (GW) detectors are 

modified Michelson interferometers.

DARM: differential change in the interferometer 

arm-length produced by the passage of a GW:

Δ(𝐿W − 𝐿N) ∝ ℎ(𝑡)

measured as a laser power variation from the dark-

port photodetector and controlled by actuating 

differentially on the two end mass mirrors.

𝒉𝐫𝐞𝐜(𝒕): reconstructed amplitude of the GW strain, 

obtained after calibration and by correcting for the 

detector optical response. [arXiv:1807.03275v2]

𝐿W =

𝐿N =

Incoming GW:  

ℎ𝜇𝜈
+ (𝑡)
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Sensitivity benchmarks: strain sensitivity

Additive noise model:

ℎrec 𝑡 ≡ 𝑠 𝑡 = ℎ 𝑡 + 𝑛(𝑡)

Predicted strain sensitivity: 

 ℎ 𝑓 = 𝑆𝑛 𝑓

where 𝑆𝑛(𝑓) is the power spectral density of 

the noise, 𝑛(𝑡).

Figure: reference sensitivity (solid lines) and 

the noise budget (dashed lines) for the 

Advanced Virgo detector. [arXiv:1408.3978v3]
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Sensitivity benchmarks: BNS range

Sensitivity range: [Bassan2014]

𝑑range

1 Mpc
= 0.86 × 10−20

ℳ

𝑀⊙

5/6

 
𝑓

min

𝑓
ISCO 𝑓−7/3

𝑆𝑛(𝑓)
𝑑𝑓

Multiplied by the rate density of sources of a 

given type, this gives an estimate of the number 

of detectable events of that type.

Figure: BNS range for Virgo and Advanced Virgo. 100 Mpc
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GW detection and parameter estimation
Gaussian, stationary noise assumption 

The expected signal-to-noise ratio (SNR) 𝝆 of a GW 

signal, ℎ(𝑡), can be expressed as:

𝜌2 = ℎ|ℎ =  
0

∞ 2 ℎ 𝑓 𝑓
2

𝑆𝑛(𝑓)
𝑑ln 𝑓

The corresponding detection statistic is optimal for 

Gaussian, stationary noise.

Under the same assumptions, parameter estimation is 

obtained form the posterior probability (Bayes 

theorem):

𝑝 𝜃 𝑠 = 𝒩 exp ℎ 𝑠 − 1
2(ℎ|ℎ) 𝑝 𝜃

where ℎ = ℎ(𝑡; 𝜃) and 𝜃 is a (set of) GW parameter(s).

GW150914

LVT151012

GW151226

[Phys. Rev. X 6, 

041015]
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But noise is often non-stationary and non-Gaussian
especially during the commissioning phase

Side-bands

Cella, Patricelli

Glitches

Razzano, 

Cuoco

Frequency

non-stationarites

“drifting lines”

Amplitude

non-stationarites
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Non-stationary noise studies

Glitch: ‘‘short’’ duration bursts of excess power. Typical time scales ≲ 1 second.

Slow non-stationary noise: characteristic time scales longer than 1 second. 

 Amplitude non-stationarities: variations of the ‘‘average power’’ within a certain 

frequency band. We can study them by means of the Band-limited Root Mean 

Square of their power spectral density:

𝐵𝑅𝑀𝑆 𝑡 =  𝑓
1

𝑓
2 𝑆𝑛 𝑓; 𝑡 𝑑𝑓

 Frequency non-stationarities: the information about a drifting line can be 

represented by the time series of its maxima, varying in time (line tracker tool). 
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Frequency non-stationarity example:
line tracker tool

Line tracker tool: based on edge detection 

algorithms (Canny’s algorithm): [Canny]

 Gaussian filter to smooth the image in 

order to remove the noise

 Intensity gradient of the image:

Sobel operator (vertical, to remove 

glitches)

 Track edge by hysteresis: suppress all 

the other edges that are weak and not 

connected to strong edges.

 Convert to the time series of the 

maxima. 8



Auxiliary sensor channels

The detector and its environment is 

continuously monitored by 𝒪 10k auxiliary 

sensors: seismometers, magnetometers, etc.

→ Flux of data: ~40 Mb/s

The idea is that some of these channels may 

‘‘witness’’ the noisy behavior of the detector.

⋙ ML !!
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Cross-correlation analysis tool

Target channel: 𝑦𝑖, for all times 𝑡0, 𝑡1, … , 𝑡𝑁. E.g.: BRMS, line, slow sensitivity channel (BNS range).

Auxiliary channels (𝒏): 𝑥1𝑖, 𝑥2𝑖, … , 𝑥𝑛𝑖. May also include powers and cross-terms.

Pearson’s cross-correlation coefficient:

𝑟𝑥𝑦 =
1

𝑁 − 1
 

𝑖=1

𝑁
(𝑥𝑖 −  𝑥)(𝑦𝑖 −  𝑦)

𝑠𝑥 𝑠𝑦

where  𝑥 = 1

𝑁
 𝑥𝑖 is the sample mean and 𝑠𝑥 = 1

𝑁−1
 𝑥𝑖 −  𝑥 2 the sample variance.

 Brute force approach: when no clues are available on the origin of the noise, search over all the 

available information provided by the auxiliary channels:

Typical set up: 𝒪(10k) seconds of data, 𝒪 (10k) auxiliary channels (fs 1 Hz)

Execution time: 5÷10 minutes
10



Multiple linear regression analysis tool:
model construction

We want to predict slow time variations of the target channel 𝑦𝑖 (ℎrec, BNS range, DARM, etc…) by 

means of a linear combination of the auxiliary channels:

 𝑦𝑖 = 𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + ⋯ + 𝛽𝑛𝑥𝑛𝑖 ≡ X𝑖𝜷

that is:

𝑦𝑖 = X𝑖𝜷 + 𝑒𝑖

where 𝑒𝑖 is the residual difference between the estimate  𝑦𝑖 and the target 𝑦𝑖 .

 Different models differ on the choice of channels to include, powers and cross-terms, or lagged variables.

 Other subtler parameters: output frequency for downsampling, signal transformations (PCA), etc.

 Optimal models will be chosen on the base of the properties of their residuals, 𝑒𝑖’s.
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Multiple linear regression analysis tool:
OLS coefficients estimators

Under the Classical Linear Model (CLM) assumptions

 X𝑖 ≡ 𝑥1𝑖, 𝑥2𝑖, … , 𝑥𝑛𝑖 is full rank

 𝐸 𝑒𝑖 = 0, 𝐸 𝑒𝑖
2 = 𝜎2 and 𝐸 𝑒𝑖𝑒𝑗 = 0

the Gauss-Markov theorem [Gauss-Markov] says that the Ordinary Least Squares (OLS) estimator  𝜷 of 

the regression coefficients is BLUE: [Robinson]

 Best (minimum variance, according to the Cramèr-Rao lower bound [Cramèr])

 Linear function of the data

 Unbiased (𝐸  𝜷 = 𝜷)

 Estimator of 𝜷

If the 𝑒𝑖’s are also normally distributed,  𝜷 becomes efficient, and reliable 𝒕 and 𝑭 tests can be 

carried out to asses models and predictors significances.

Residual diagnostics

Principal Components Analysis
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Regression tool flowchart

Target pre-processing:

• Quality checks: ITF mode, 
locking

Amplitude non-stats.:
• Signal BLRMS

Frequency non-stats.:
• Line tracker

Auxiliary pre-processing:

•Quality checks: nans, con-
stant, piecewise const., etc.

• PCA: energy cut, collinear-
ity, condition number, etc.

• Line tracker

Computation of the OLS 

regression coefficients  𝛽
through SVD 

decomposition and 

target estimation:

 𝑦𝑖 = X𝑖𝜷

Residuals analysis

𝑒𝑖 = 𝑦𝑖 −  𝑦𝑖 = 𝑦𝑖 − X𝑖𝜷

• Gaussianity

• Independence

• Engle’s ARCH test

Models and predictors 

significances
• 𝑡 test on predictors

• 𝐹 test on models

• Log-likelihood, AIC, 

BIC, etc.

Noise prediction



Regression analysis example

Results:

54k seconds of data, 216 model params.

𝑅adj
2 ≃ 72%.

Many channels related with the pre-stabilized 

laser and the injection subsystem.Refer to the spectrogram on page 8
14



Regression analysis example (II)

Results:

5k seconds of data, 216 model params.

𝑅adj
2 ≃ 91%.

Seismometers and magnetometers in the West 

End Building.
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Cross-correlation analysis example

Cross-correlation analysis  of 

the previous BNS range drop.

Plots of the 9 most correlated 

auxiliary channels with the BNS 

range channel; again, 

seismometer sensors in the 

West End building. 
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Conclusions and perspectives

 Two tools (plus the line tracker) have been developed for studying slowly varying, 

non-stationary noise.

 These tools are meant to help commissioning activities involving noise hunting 

and characterization, and to provide a “more stationary and Gaussian” detector 

for the next science run (O3, February 2019).

 They have proven to be fast and reliable aids during the last commissioning runs 

(C9 and C10).

 Improve better modelling for target prediction and noise subtraction: Bayesian 

regression, principal components classification.

 Automatic noise identification through convolutional neural networks (figure).

 Integration with the other existing tools: comprehensive non-stationary noise 

suite. 17



Working schedule and project plans 

2018 2019

Commissioning ER13 ER14
O3

(approx one calendar year long)Upgrades

Commissioning ER13 ER14
O3

(approx one calendar year long)Upgrades

LIGO

Virgo

Joint LIGO-Virgo 

working schedule

for O3
[LIGO-G1800889-v4]

Old G. 

Vajente’s

NonNA tools

Bayesian 

regression

New regression analysis 

tool

Cross-

correlation 

tool

Line tracker

Write thesisCNN noise recog.

Non-stat. 

Noise suite

ME
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Similar patterns in different channels



A stochastic background of GW is the signal 

produced by the superposition of a large 

number of independent, unresolvable GW 

sources.

SGWB data analysis is very demanding:

 Huge amount of high quality data: few 
notches and cuts 

 Low (stationary) noise in a broad 
frequency band 

Sensitivity: [Allen]

Ωgw ∝
𝑆𝑛(𝑓)

∆𝑓 𝑇

A (biased) example: the Stochastic Background of GWs



Example: Line tracker tool



Example: Line tracker tool



Example of non-stationary noise during 

commission phase (June 2017)


