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Introduction:

Advanced gravitational wave detectors
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Advanced gravitational wave (GW) detectors are

. differential change in the interferometer
arm-length produced by the passage of a GW.

A(Ly — Ly) < h(t)

measured as a laser power variation from the dark-
port photodetector and controlled by actuating
differentially on the two end mass mirrors.

: reconstructed amplitude of the GW strain,
obtained after calibration and by correcting for the

detector optical response. | ]
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Sensitivity benchmarks: strain sensitivity

Additive noise model:

h..(t) = s(t) = h(t) + n(t)
Predicted

h(f) = v/S.(F)

where S, (f) is the power spectral density of
the noise, n(t).

Figure: reference sensitivity (solid lines) and
the noise budget (dashed lines) for the
Advanced Virgo detector. | ]

-22

10

8

Strain [1VHz]
o

[ i i (ol iy

Quantum noise

Gravity Gradients
Suspension thermal noise
Coating Brownian noise
Coating Thermo-optic noise

~2 1= = = Substrate Brownian noise

Seismic noise

~- | = = = Excess Gas

OMC thermo-refractive
Alignment noise
= = = Magnetic noise

- = = = Sum of the plotted noises

- Reference AdV curve

Frequency [Hz]




| ]

5/6 _
d M fISCOf 7/3
e _ ) g6 x 10720 (—) j df
1 Mpc Mg r Sa(f)

Multiplied by the rate density of sources of a
given type, this gives an estimate of the number

of detectable events of that type.

Figure: BNS range for Virgo and Advanced Virgo.
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GW detection and parameter estimation

Gaussian, stationary noise assumption

The expected (SNR) p of a GW 10 GW150914
signal, h(t), can be expressed as: LVT151012
~ 5 GW151226
“ |2R(N) T
p? = (h|h) =j dln [
o Su(f) ! 1022} )

The corresponding detection statistic is optimal for
Gaussian, stationary noise.

Under the same assumptions, parameter estimation is

J/S(f) and 2/a(f)|VF (strain/v'Hz)

obtained form the (Bayes 107 b
theorem): - — Hanford
p(Bls) = Nexp[(hls) = %(h|h)] p(6) - L.iVihgs.t.o.r.‘. _
10! 10° 10°
where h = h(t; 0) and 0 is a (set of) GW parameter(s). Frequency (Hz)



But noise is often non-stationary and non-Gaussian
especially during the commissioning phase

Spectrogram of V1:spectro_LSC_DARM_300_100_0_0 : start=1217380871.000000 (Sat Aug 4 01:20:53 2018 UTC)
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Non-stationary noise studies

Glitch: “short” duration bursts of excess power. Typical time scales < 1 second.
Slow non-stationary noise: characteristic time scales longer than 1 second.

Amplitude non-stationarities: variations of the “average power” within a certain

frequency band. We can study them by means of the Band-limited Root Mean
Square of their power spectral density:

BRMS() = |[175,(f;0) df

Frequency non-stationarities: the information about a drifting line can be
represented by the time series of its maxima, varying in time (/ine tracker tool.



Frequency non-stationarity example:

line tracker tool

Line tracker tool: based on edge detection  ,,______ p'fdr'h in LSC_DARM spectrogram _
algorithms (Canny’s algorithm): [ =11/ *\-}
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The detector and its environment is
continuously monitored by 0(10k)
. seismometers, magnetometers, etc.

3 km

Flux of data: ~40 Mb/s

The idea is that some of these channels may
“witness” the noisy behavior of the detector.

From ﬂ
]

the laser

PRM Fabry-Perot arm cavity
Photodetector



Cross-correlation analysis tool

Target channel: y,, for all times ¢, ¢, ..., ty. E.g.: BRMS, line, slow sensitivity channel (BNS range).
Auxiliary channels (n): x,,, x,,, ..., x,;. May also include powers and cross-terms.
Pearson'’s cross-correlation coefficient:

1 NGB0

Yo N-—-1 S.S
i=1 Y

where X = =¥ x; is the sample mean and s, = —— ¥.(x; — X)? the sample variance.

Brute force approach: when no clues are available on the origin of the noise, search over all the
available information provided by the auxiliary channels:

Typical set up: O(10k) seconds of data, O (10k) auxiliary channels (fs 1 Hz)

Execution time: 5+10 minutes 0



Multiple linear regression analysis tool:

model construction

We want to prediict slow time variations of the target channel y. (h
means of a linear combination of the auxiliary channels:

Vi=PBo+ B1xy; + Brxy + -+ Box =XB

BNS range, DARM, etc...) by

rec/

that is:
Y, =Xp +e
where e; is the residual difference between the estimate y, and the target y;.

Different models differ on the choice of channels to include, powers and cross-terms, or lagged variables.
Other subtler parameters: output frequency for downsampling, signal transformations (PCA), etc.
Optimal models will be chosen on the base of the properties of their residuals, e;'s.
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Multiple linear regression analysis tool:

OLS coefficients estimators

Under the Classical Linear Model (CLM) assumptions

X; = (xq; X5 s Xpy) IS full rank } Principal Components Analysis
Ele] =0, E[e?]=0?and E[ee]=0 |} Residual diagnostics
the Gauss-Markov theorem | ] says that the Ordinary Least Squares (OLS) estimator B of

the regression coefficients is BLUE: | ]

Best (minimum variance, according to the Cramer-Rao lower bound [ 1)
Linear function of the data

Unbiased (E|B] = B)

Estimator of 8

If the e,'s are also normally distributed, 8 becomes efficient, and reliable t and F tests can be
carried out to asses models and predictors significances. 15




Regression tool flowchart
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Regression analysis example

le_‘EO

Regression analysis of target channel LSC_DARM blrms in band [18.0, 21.0] Hz of Aug 04
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Results:

54k seconds of data, 216 model params.

RZ4; = 72%.

Many channels related with the pre-stabilized

laser and the injection subsystem.
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Regression analysis example (Il)

Residuals check
Regression analysis of target channel Hrec_Range BNS of Aug 05
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Cross-correlation analysis example

Cross-correlation with Hrec_Range_ BNS of Aug 05
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Conclusions and perspectives

Two tools (plus the line tracker) have been developed for studying slowly varying,
non-stationary noise.

These tools are meant to help commissioning activities involving noise hunting
and characterization, and to provide a "“more stationary and Gaussian” detector
for the next science run (O3, February 2019).

They have proven to be fast and reliable aids during the last commissioning runs
(C9 and C10).

» Improve better modelling for target prediction and noise subtraction: Bayesian
regression, principal components classification.

» Automatic noise identification through convolutional neural networks ( ).

» Integration with the other existing tools: comprehensive non-stationary noise
suite. 17



Working schedule and project plans
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A (biased) example: the Stochastic Background of GWs

23 Example of SGWB signal at the detector output A is the signal
x 10 "
5 | | | | | | | | i—y produced by the superposition of a large
h(t) number of independent, unresolvable GW
sources.
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Example: Line tracker tool

Example of drifting lines in LSC_DARM spectrogram
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Example: Line tracker tool

le—-17

30 -
" « Line tracked

bBL AR &

i WA vy gy SN 2
vy il v —

A . u: { f ’.M"y,“ o
) \ | ‘\ r"l .‘I“ ) y £
, " - Y IAL h‘l A '| ] ' E

A A \“"'"'.'ﬂd.tw &

: .‘ | | 1 ,ﬂﬁ’."ﬁ“l" 8'

! vy | el |

|
]

. |
P WET PN TPITBEIE Tl e 0 0 VR T PN ) B 277 PITTNTNANGUT Y SERAE 4 0 Y1 PP e dhgipes v e
' A

0 10000 20000 30000 40000 50000 60000



Example of non-stationary noise during
commission phase (June 2017)

Spectrogram of V1:spectro_LSC_DARM_300_100_0_0 : start=1181606078.000000 (Thu Jun 15 23:54:20 2017 UTC)
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