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Genetic Algorithms



Evolutionism in programming
Genetic Algorithms (Holland, 1975) are adaptive heuristic search 
algorithms that were invented to solve optimisation problems

They attempt at making an intelligent exploitation of a random 
search mimicking some processes observed in Nature: natural 
selection, “survival of the fittest” (Darwin, 1837)

Although randomised, they are not random: they exploit 
historical information to direct search into the region(s) of better 
performance(s) within the search space

They are credited as among the most robust and reliable non-
derivative global-optimisation tools for problems of moderate size 
(few tens of unknown)
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John H. Holland, 
Adaptation in 
Natural and Artificial 
Systems (1975)

Charles R. Darwin,
Tree of Life
(1837)



Optimisation problems
Simple case:

given a function

𝑓(𝑥1, 𝑥2, 𝑥3, … )

find the set of variables (optimal solution) 𝑥𝑖, with
𝑖 = 1, 2, 3, …, for which 𝑓 takes the maximum value.

Real-world complications:
 Multi-objective optimization (conflicting criteria)

 Multiple constraints

 Non-differentiable functions 

 Combination of continuous and discrete variables

 …
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Other common optimisation methods
Calculus approach: find 𝑥𝑖 such that 𝛁𝑓 𝑥1, 𝑥2, 𝑥3, … = 𝟎

Random search: points are randomly selected and evaluated

Gradient based methods
 Classical “hill-climbing” method: starting at a random 

location, moving in the direction of steepest ascent 

 Iterative hill-climbing: the procedure is reiterated at different 
starting points

 Simulated annealing: up- and down-hill moves are weighted

Non-gradient search
 Nelder-Mead’s method: movements of a “simplex” in the 

search space
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Example: Fraunhofer single slit diffraction
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𝜆

𝑦

0

Problem: find the maxima of the 
intensity of the diffracted light from a 
single vertical slit:

𝐼 𝑥 = 𝐼0
sin 𝑥

𝑥

2

where 𝑥 = 𝜋𝑤 𝑦

𝜆𝐷
.

Minima: 𝑥𝑘 = 𝑘𝜋, with 𝑘 = ±1,±2,… .

𝒇′ 𝒙 = 2 sin 𝑥 cos 𝑥
𝑥2

− sin 𝑥
𝑥3



Conversion: in order to better model the genetic 
process of  evolution, real numbers are usually 
converted into arrays of binaries. 
Example:

𝜋 ≃ 3.141… → [0,0,1,1 , 0,0,1,0,0,1,0,0,0,0]

Gene: possible values (alleles) 0 or 1, encodes the 
genetic features of the individual.
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Problem definition: search space, 
individuals and genes
Each candidate solution to the problem, drawn from a 
suitable search space, is encoded in an individual
(composed of one or more chromosomes): in our case, 
“any” 𝑥 ∈ ℝ.

chromosome/individual

# Genetic Algorithm solution to the

# single slit diffraction problem

>>> from random import randint,random

>>> from numpy import sin,arange,array

# Definition of an individual

# as an array of integers

>>> def individual(length, min, max):

return [ randint(min,max) for \

x in xrange(length)]

# Genes representation

>>> x = individual(12,0,1)

# Get the real value of the individual

>>> def xvalue(individual):

return round(sum(individual[i]\

*2**(3-i) for i in \

xrange(len(individual))),3)

integer and fractional part
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# Creation of a collection of

# individuals, population

>>> def population(size,length,min,\

max):

return[individual(length,min,\

max) for x in xrange(size)]

# Example: population of 5 individuals

# constituted by 12 random binary

# genes each

>>> Pop = population(5,12,0,1)

Creation of the initial population

A number (size, chosen by the use) of individuals 
is drawn from the search space:

This is (usually) randomly generated, in order to 
guarantee no initial bias in the search space

In some circumstances, a priori knowledge can 
be implemented producing an initial bias 
towards what we expect to be the true solution.

In our case the objective function is even and the 
candidate solutions are expected to be close to zero 
(in front of the slit).
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# Evaluate the objective function

>>> def fvalue(individual):

xv = xvalue(individual)

if xv == 0:

return 1

else:

return (sin(xv)/xv)**2

# fitness function = objective f.

>>> def fitness(individual)

return fvalue(individual)

# Define the average pop fitness

>>> def afitness(pop):

return sum(fitness(\

population[i]) for i in \

xrange(len(population))) \

/len(population)

Fitness function

We need a way to judge how effective each 
candidate solution is, i.e. the fitness of each 
individual.

The fitness function maps the chromosome 
representation into a scalar value: (usually)
the higher, the better

It has to contain ALL the objectives that need to 
be optimised

In our optimisation problem, the (non-negative) 
function that has to be maximised can be simply used 
as the fitness function as well 
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# Evolution of the popultion through

# generations

>>> def evolve(pop,retained_frac=.2,\

random_prob=0.05, mutation_prob= \

0.02):

selected = [ (fitness(x),x) for x\

in pop]

selected = [ x[1] for x in \

sorted(selected)]

retained = int(len(selected)\

*retained_frac)

parents = selected[retained:]

for individual in \

selected[:retained]:

if random_prob > random():

parents.append(individual)

Evolution of the population (1)

We want to improve our population in an 
iterative (evolutionary) process:

1. Natural selection: for each generation
(iteration) we select a fraction of the “best 
performing” individuals, as judged by their 
fitness, to be the parents for the next one.

⇒ We also randomly add some other individuals to 
promote genetic diversity: this decrease the risk of getting 
stuck at a local maximum.
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parents_number = len(parents)

desired_children = len(pop) - \

parents_number

children = []

while len(children) < \

desired_children:

dad = randint(0,parents_number-1)

mom = randint(0,parents_number-1)

if dad != mom:

dad = parents[dad]

mom = parents[mom]

half = len(dad)/2

son = dad[:half] + mom[half:]

children.append(son)

parents.extend(children)

Evolution of the population (2)

We want to improve our population in an 
iterative (evolutionary) process:

2. Crossover: we breed together parents to give 
birth to children until the desired population size 
is restored.

It is ok to have one parent breed multiple times, but one 
parent should never be both the father and the mother of 
a child at the same time.
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for individual in parents:

if mutation_prob > random():

gene_to_mutate = randint(0,\

len(individual)-1)

individual[gene_to_mutate]=\

randint(min(individual),\

max(individual))

return parents

Evolution of the population (3)

We want to improve our population in an 
iterative (evolutionary) process:

3. Mutation: we randomly change the values of 
the genes in the individuals’ chromosomes, 
introducing new genetic material.
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>>> Pop = population(10,12,0,1)

>>> popval = []

>>> for i in xrange(len(Pop)):

popval.append([xvalue(Pop[i]),\

fvalue(Pop[i])])

>>> xval,yval = array(popval).T

>>> x = arange(-1,16,.01)

>>> plt.plot(x,(sin(x)/x)**2)

>>> plt.scatter(xval,yval)

>>> plt.xlabel('$x$')

>>> plt.ylabel('$f(x)$')

>>> plt.legend(['Objective function',\

'Individual'])

>>> plt.show()

Test: generation of the individuals

Generations: 40, Individuals in the population: 10, Genes: 12
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>>> Pop = population(10,12,0,1)

>>> fitness_history = [afitness(Pop),]

>>> while afitness(Pop) < 0.999:

Pop = evolve(Pop)

fitness_history.append(\

afitness(Pop))

>>> for datum in fitness_history:

print datum

>>> plt.plot(fitness_history)

>>> plt.title('Evolution of the \

population fitness')

>>> plt.xlabel('Generation')

>>> plt.ylabel('Average fitness')

>>> plt.savefig('average.png')

>>> plt.show()

Performance: average fitness of 
the population

Individuals in the population: 10, Genes: 12.

Average fitness tends to increase with generations.
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>>> def find_best(pop):

selected=[[fitness(x),x] for x\

in pop]

selected = sorted(selected)

best = selected[-1]

return best

>>> best_history = [find_best(Pop)]

>>> while find_best(Pop)[0] < 0.999:

Pop = evolve(Pop)

best_history.append(\

find_best(Pop))

>>> best_array = []    

>>> for datum in best_history:

best_array.append(\

[xvalue(datum[1]),datum[0]])         

Performance: evolution of the 
fittest individual in the population

Individuals in the population: 10, Genes: 12.

Jumps are due to mutation of the most significant genes.
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Mirrors optical coatings in advanced 
gravitational wave detectors

(Pictures not to scale)



Interferometric gravitational wave detectors

Modern Gravitational Waves (GWs) detectors 
are modified Michelson interferometers

GWs act as quadrupolar tidal forces on the 
suspended mirrors (test masses)

The goal is to measure these forces through 
the difference of phase of the recombined light 
at the output of the two interferometer arms

Many noise sources can mimic this effect and 
limit the detector sensitivity
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Detector sensitivity to gravitational waves
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Left: detector strain sensitivity (black line), 
together with the corresponding noise budget 
(coloured lines).
Top: spectrogram of GW150914 at LIGO Hanford.



Mirrors structure in Virgo and LIGO detectors
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Mirrors are obtained by means of 𝑁𝑑 stacked doublets of 
low- and high-refraction index materials. Typically:

High: Ta2O5, tantalum pentoxide (tantala), 𝑛𝐻 ≳ 2
Low: SiO2, silicon dioxide (silica), 𝑛𝐿 ≃ 1.45

with: 𝑧𝐿,𝐻 = thickness in units of local wl. ≡ 𝑑𝐿,𝐻
𝑛𝐿,𝐻
𝜆0

= 1/4

The mirror reflectance is given by:    [P. Beyersdorf, 2016]

𝑑𝐻

…

𝑑𝐿

𝑛𝐿 𝑛𝐻𝑛𝐿 𝑛𝐻 𝑛𝐿 𝑛𝐻

su
b

st
ra

te

𝜆0/2

𝑅 =  𝐸𝑅0 𝐸𝐼0
2,   where:     

𝐸𝐼0
𝐸𝑅0
𝐸𝐼1
𝐸𝑅1
⋮

=

1 0 0
𝑟01 0 0

𝑡01𝑒
−2𝜋𝑖𝑧1

0
⋮

0
0
⋮

0
𝑟12
⋮
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𝑡01𝑒
−2𝜋𝑖𝑧1 ⋯
0
0
⋮

⋯
⋯
⋱

𝐸𝐼0
𝐸𝑅0
𝐸𝐼1
𝐸𝑅1
⋮

,         
𝑟01 =

𝑛1−𝑛0
𝑛1+𝑛0

𝑡01 =
2𝑛0

𝑛1+𝑛0

𝑧1 𝑧2

𝑛1 𝑛2𝑛0

𝑧3 𝑧4

𝑛3 𝑛4

𝐸𝐼0

𝐸𝑅0

𝐸𝐼1

𝐸𝑅1
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𝐸𝑅3



Coating Thermal Noise: how to reduce 
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Fluctuation-dissipation theorem: internal friction in coating layers produces a 
Brownian noise whose power spectral density is:   [I.M. Pinto, 2009]

𝑆𝐵 𝑓 =
2𝑘𝐵𝑇

𝜋3/2𝑓

1 − 𝜎2

𝑤 𝑌𝑠
𝜙𝑐

𝜙𝑐 = 𝑏𝐿𝑑𝐿 + 𝑏𝐻𝑑𝐻 ,

𝑏𝐿,𝐻 =
𝜆0

𝜋

𝜙𝐿,𝐻

𝑛𝐿,𝐻
𝑌𝐿,𝐻/𝑌𝑠 + 𝑌𝑠/𝑌𝐿,𝐻

Reduce temperature 𝑇
(KAGRA, 3rd gen. Detectors)

Broaden the beam

Change the properties of 
the materials: 𝑌, 𝑛, 𝜙.

Reduce the loss angle 
changing the thickness 
of the dielectrics 

High-refraction layers, 
Ta2O5, have the highest 
dispersions



Genetic Algorithm optimization of the 
mirror coatings
Objective: reduce the thermal noise (increase the sensitivity), reduce

the Ta2O5 thickness

Constraints: fixed mirrors reflectance, maximum total thickness (others)   

Individuals: 𝑧1, 𝑧2, 𝑧3, … , 𝑧𝑁𝑑

Fitness function: largely arbitrary, one possibility:

𝑓 𝑅, 𝑑Ta2O5
= 1−𝑅

15 ppm

2
+ 𝑑Ta

2
O

5
5000 nm

2

FRANCESCO DI RENZO , FIRST YEAR SEMINAR – DOCTORAL SCHOOL OF PHYSICS – UNIVERSITY OF PISA , 21 SEPTEMBER 2017 21

Continuous variables:  𝑧𝑖 ∈ [0, 1/2)

Discrete variable: chromosomes are 
allowed to change their length

minimise



Results: single doublet optimisation
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Figure: constant reflect-
ance contours (ellipses)
and constant Thermal
Noise (straight lines) vs.
optical thickness in units of
local wavelength for a
single SiO2 – Ta2O5 doublet.
[J. Agresti, 2006]

Standard layout: QWL layers
 𝑧𝑆 = 𝑧𝑇 = 1/4
 maximum reflectance
 high Thermal Noise

Approximate optimisation:
Half-wavelength doublets,
𝑧𝑆 = 3/8, 𝑧𝑇 = 1/8. 

Exact optimisation:
 minimum Thermal Noise 

for fixed reflectance
 non-periodic layers

𝑧𝑇 + 𝑧𝑆 = 1/2



Results, comparison: 15 ppm loss (1 − 𝑅)
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Non-periodic, 44 layers,
7033 nm thickness, 1816 nm Ta2O5

(Standard) Periodic 𝜆/4 + 𝜆/4, 38 layers,
6153 nm thickness, 3663 nm Ta2O5



Results, comparison: 44 layers
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Non-periodic, 15 ppm loss,
7033 nm thickness, 1816 nm Ta2O5

Periodic 3𝜆/8 + 𝜆/8, 60 ppm loss,
7766 nm thickness, 1430 nm Ta2O5



Results: noise optimisation
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Figure: coating Thermal Noise at 1 − 𝑅 = 
8.3 ppm as a function of the number of 
doublets 𝑁𝑑.

● : “exact” non-periodic optimisation
○ : approximate half-wavelength solution

Thermal Noise is reduced by 14%!!!
Event rate boosted by 25%!!!

Standard QWL design

𝑟max ∝ 1/ℎmin, ℎm𝑖𝑛 ∝ 𝑆floor
1/2

, Rate ∝ 𝑟max
3 ∝ 𝑆floor

−3/2



Results summary for the coating optimisation
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Multilayer mirror coating of lowest Thermal Noise at a prescribed 
reflectivity can be designed by Genetic Algorithms;

Non-periodic optimal solution can be found as well as periodic non-
QWL approximate solutions;  

14% reduction of the Thermal Noise and 25% boost of the event 
rate for isotropic sources of Gravitational Waves.
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Extra slides



GAs applications in High Energy Physics
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Experimental HEP: [L. Teodorescu, 2007]

Event selection for Higgs search at the LHC [K. Cranmer, arXiv:physics/0402030v1]

Trigger optimisation [L1 and L2 CMS SUSY trigger – NIM A502 (2003) 693]

 Neural-netwok optimisation for Higgs search             [F. Hakl et.al., talk at STAT2002]

Theoretical/phenomenological HEP:

Fitting isobar models to data for 𝑝 𝛾, 𝐾+ Λ [D.G. Ireland, arXiv:nucl-th/0312103v3]

Discrimination of SUSY models [B.C. Allanach, arXiv:hep-ph/0406277]

String Theory [F. Ruehle, JHEP08(2017)038]



Other applications of GAs:
the knapsack problem

FRANCESCO DI RENZO , FIRST YEAR SEMINAR – DOCTORAL SCHOOL OF PHYSICS – UNIVERSITY OF PISA , 21 SEPTEMBER 2017 29

Simple problem in combinatorial optimisation:

“Given a set of items, each with a weight and a 
value, determine the number of each item to 
include in a collection so that the total weight is 
less than or equal to a given limit and the total 
value is as large as possible.” (Dantzig, 1930)

GAs solution: 
 One gene for each object
 Variable length chromosomes
 Fitness function is the value of the knapsack



Having fun with GAs: beat Super Mario
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https://www.youtube.com/watch?v=PHwMH28wFuM

One gene per every quarter second
 Each gene is one of: ←,↑,→,↓,A,B or a 
combination of two of them
 The fitness function is the distance Mario 
travels combined with a built-in score function
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