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A world of power-laws f (x) = C x−α

Power-laws occur in many contexts:

• wealth among individuals (Pareto’s law or 80/20 rule)

• city sizes, family names, words frequency (Zipf’s law)

• physical stimulus vs perceived intensity (Steven’s law)

• frequency of publications per author (Lotka’s law)

• earthquake magnitude vs frequency (Gutenberg-Richter’s law)

• etc . . .

Power-laws =⇒ scale-invariance: f (λx) ∝ f (x)

Purpose of self-organized critical (SOC) models

Provide robust mechanisms giving rise to scale invariant behaviors
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Requirements for self-organized criticality

Assumptions

• Observed data produced by an underlying dynamical process

• Complex dynamics, involving interactions between subsystems

Required feature: “Adaptation to the edge of chaos”

• robustness: existence of an attractor for the dynamics.

• scale-invariance: as self-similarity in chaotic systems

SOC systems are dynamically self-driven toward their critical point
=⇒ the same critical behavior is reached without fine-tunings.
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Why criticality is useful

• The typical exponential behavior of observables turns into
power-laws (diverging correlation length ξ).

• Universality =⇒ simple models can be effective in
describing different phenomena regardless of details of the
system.

• The exponents of power-laws are universal, depending only on
very general features of the system (i.e. dimensionality).

A good model for a critical phenomenon should be simple enough
to be amenable, and at the same time accurate enough to repro-
duce correctly all critical exponents.
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General features of SOC models

Features common to all SOC models are:

• Presence of a critical threshold which induces nonlinear energy
dissipation events (avalanches), driven by positive feedback

• Continuous input of energy in the system, usually at slow
rates with respect to avalanche durations

• The energy input is delivered randomly in space and/or time
(i.e. as a Poisson process)

Lack of guarantees

The features above may not always lead to SOC behaviour
(an example discussed later)
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Historic example: (abelian) sandpile BTW model

Cellular automaton for 2D abelian sandpile (Bak et al. [BTW87]):
local height: hx ,y , concavity zx ,y
zx ,y = ∆hx ,y = 4hx ,y − hx+1,y − hx ,y+1 − hx−1,y − hx ,y−1.

toppling if zx ,y ≥ zc (usually zc = 4):

• zx ,y → zx ,y − 4,

• zx±1,y → zx±1,y + 1,

• zx ,y±1 → zx ,y±1 + 1
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Other simple example: forest-fire/epidemic model

First formulation of the Forest Fire Model (FFM) given by Bak et
al. [BCT90].

Three-state cellular automaton on an hypercubic lattice with Ld

sites with the following update rules:

(i) A burning tree becomes an empty site.

(ii) A green tree becomes a burning tree if at least one of its
nearest neighbors is burning.

(iii) At an empty site a tree grows with probability p.
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Bak’s FFM: critiques about self-organized behaviour

Numerical simulations by Grassberger have shown that:

Bak’s FFM is not critical but deterministic

• oscillatory behaviour

• spiral shaped firefronts

• characteristic scale: 1/p

Deterministic behavior is common to many cellular automata,
i.e. the famous Conway’s game of life.
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The Drossel-Schwabl FFM I

Drossel and Schwabl proposed a modification of the Bak’s model
introducing a fourth updating rule [CDS96]:

(iv) A tree without a burning nearest neighbor becomes a
burning tree during one time step with probability f .

For sufficiently small birth-rate p, this model is shown to be critical
with a relevant parameter (f /p) and critical point at (f /p)→ 0.

p/f is a measure for the number of trees growing between two
lightning strokes, T (smax) is the max time interval for burning a
cluster. Conditions for SOC behaviour:

T (smax)� p−1 � f −1,

double separation of time scales.
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The Drossel-Schwabl FFM II

Lets define some observables with scaling laws (in a finite system):

• s ∝ (f /p)−λ, mean cluster size,

• T (s) ∝ ξz , mean time interval for burning a cluster,

• N(s) ∝ s−τ Φ(s/sξ), mean number of s-clusters (τ > 2),

• R(s) ∝ s1/µ Φ̃(s/sξ), mean gyration radius for an s-cluster,

• ξ ≡ R(s) ∝ (f /p)−ν , correlation length.

Where sξ ∝ s ∝ (f /p)−λ is a cutoff cluster size, and Φ, Φ̃ are
universal functions (Φ(x)→ 1 for x � 1, Φ(x)→ 0 for x � 1).
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The Drossel-Schwabl FFM III

Assuming p � T (smax)−1 we can give an estimate of s:

s =
1− ρt
ρt

(f /p)−1,

where ρt is the mean tree-density; this implies λ = 1.
Finally, using the scaling relations:

λ = νµ, d = µ(τ − 1)

We obtain the following estimate of the critical exponents:

λ = 1, τ = 2, µ = d , ν = 1/d
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Simulation of the Drossel-Schwabl FFM I
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Simulation of the Drossel-Schwabl FFM II
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Simulation of the Drossel-Schwabl FFM III

Results of numerical simulations:

Drossel-Schwabl [CDS96]:

τ ≈ 2.15

µ ≈ 1.96

ρct ≈ 0.41

1/δ ≈ 0.5

Ours:

τ = 2.16± 0.01

µ = 1.91± 0.01

ρct = 0.406± 0.005

1/δ = 0.47± 0.08
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Fractal-diffusive SOC models
It is useful to extract expectations for a general class of SOC
models in order to compare with experimental data.

Observing the time evolution of avalanche volumes it is possible to
measure the fractal dimension DS , defined by V (t) ∝ tDS/2.
A coarsest-order analytical estimate of DS is the average between
the minimum and the maximum dimension, i.e. DS ' (1+d)

2 .

Since the probability for an avalanche with size V is
N(V ) ∝ Vtot

V ∝ V−1 and the flux dE(t)
dt ∝ 〈E 〉VS(t) ∝ tDS/2, an

estimate of the total dissipated energy goes like:

E (t) =

t∫
0

dτ
dE (τ)

dτ
∝ t1+DS/2

=⇒ N(E )dE = N(T (E ))|dTdE |dE ∝ E−[1+(d−1)/(DS+2)] ≡ E−αE .

A naive expectation for d = 3 gives the critical exponent αE ' 1.5.
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Solar flares

SOC features in solar flares

• threshold: critical stressing angle between a potential and
non-potential magnetic field line in an active region

• avalanche: magnetic flux reconnection triggering the flare
• dissipated energy: measured by the variation of magnetic

energy before and after the flare, or by the plasma thermal
energy, or by the kinetic energy of accelerated particles.
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Solar flares

Most of the data collected in form of the energy flux observations.
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Solar flares: hard X-rays

Seemingly good power-law behaviour!
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Comparison between FD-SOC predictionand experiments

FD-SOC prediction somewhat good
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Comments and conclusions

Some critique is in order:

• It is still debatable if and when power-laws observed for various
complex dynamical systems come by SOC mechanisms.

• Furthermore, power-laws can also be mimicked by log-normal
distributions with large variance (multiplicative processes).

• Experimental data need large statistics to assess simple models
(since computations of critical exponents are expensive).

Nevertheless, SOC models are still actively investigated in many
fields, as earthquakes, neural networks, solar flares, giving often
qualitatively reasonable results from elementary models.

Thank you for the attention!
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