

Università di Pisa

INFORMATION TRANSFER BETWEEN GROUPS OF DYNAMIC VARIABLES

Author

Pietro Carra pietro.carra@df.unipi.it

Outline of the presentation

- Concepts of complex systems and information theory
- **Transfer Entropy** as a way to measure the direction of the information flow
- Cluster Index: identifying significant groups of dynamic variables
- Examples and simulations
- Conclusions and questions!

Complex systems study

- We know nothing about the variables
- We can observe how the system evolves
- We want to understand which variables are more important

Information flow: applications

Università di Pisa

- Studying the directionality of information flow is of great importance in many different fields
 - Economics
 - Genetics
 - Neuroscience
 - Industrial processes

Importance of the directionality

Università di Pisa

- Correlation and mutual information are symmetric quantities
- Inadequate to study the directionality of the information flow.
- This directionality can be of great importance in neuroscience

Ito, Shinya, et al. "Extending transfer entropy improves identification of effective connectivity in a spiking cortical network model." *PloS one* 6.11 (2011): e27431.

Transfer entropy: definition

• Shannon entropy:

$$H_{I} = -\sum_{i \in I} P(i) \log_2(P(i)) \qquad H_{I|J} = -\sum_{i \in I, j \in J} P(i,j) \log_2(P(i|j))$$

• Measures the average number of bits that need to be used to encode independent draws of the discrete variable I, following a probability distribution P(i)

Transfer entropy: definition

$$K_{I} = -\sum_{i \in I} P(i) \log_2 \left(\frac{Q(i)}{P(i)} \right) \qquad K_{I|J} = -\sum_{i \in I, j \in J} P(i,j) \log_2 \left(\frac{Q(i|j)}{P(i|j)} \right)$$

- Measures the loss of information when the distribution Q is used to approximate distribution P
- It is the excess number of bits necessary to encode P(i) with Q(i)

Transfer entropy: definition

• Transfer entropy:

 $TE(Y \to X) = \text{information lost using}$ $P(x_{n+1}|x_n, x_{n-1}, \dots, x_{n-k+1}) \text{ to approximate}$ $P(x_{n+1}|x_n, x_{n-1}, \dots, x_{n-k+1}, y_n)$

• Transfer entropy:

$$TE(Y \to X) = -\sum_{n=1}^{\infty} P(x_{n+1}, x_n, x_{n-1}, \dots, x_{n-k+1}, y_n) \log_2\left(\frac{P(x_{n+1}|x_n, x_{n-1}, \dots, x_{n-k+1})}{P(x_{n+1}|x_n, x_{n-1}, \dots, x_{n-k+1}, y_n)}\right)$$

Schreiber, Thomas. "Measuring information transfer." *Physical review letters* 85.2 (2000): 461.

Characteristics of Transfer Entropy

$$TE(Y \to X) = -\sum P(x_{n+1}, x_n, x_{n-1}, \dots, x_{n-k+1}, y_n) \log_2 \left(\frac{P(x_{n+1} | x_n, x_{n-1}, \dots, x_{n-k+1})}{P(x_{n+1} | x_n, x_{n-1}, \dots, x_{n-k+1}, y_n)} \right)$$

- When y_n has no influence over x_{n+1} : $TE(Y \to X) = 0$
- Transfer entropy is asymmetric: $TE(Y \rightarrow X) \neq TE(X \rightarrow Y)$
- Different from the more widely known mutual information:

$$M_{X,Y} = -\sum_{x,y} P(x,y) \log_2\left(\frac{P(x,y)}{P(x)P(y)}\right)$$

• This allows to capture the directionality of the information flow

Finding clusters: Cluster Index

• Integration:

$$I(S) = \left(\sum_{j \in S} H_{x_j}\right) - H_S$$

• Cluster Index:

$$CI(S) = \frac{I(S)}{M_{S,(U-S)}}$$

Simulations

Università di Pisa

Node(t+1)	Case 1	Case 2
N01	Random	Random
N02	Random	Random
N03	$N04 \oplus N05$	N10 \land (N04 \oplus N05)
N04	N03 ⊕ N05	N03 ⊕ N05
N05	N03 ⊕ N04	N03 ⊕ N04
N06	Random	Random
N07	Random	Random
N08	N05 \land (N09 \oplus N10)	N05 \land (N09 \oplus N10)
N09	N08 ⊕ N10	N08 ⊕ N10
N10	$N08 \oplus N09$	N08 ⊕ N09
N11	Random	Random
N12	Random	Random

12

Cluster Index: case 1

Position	Group	
1	8 9 10	3 5
2	3 4 5	8
3	9 10	4
4	3 4 5 8	9
5	4 5	

- CI depends on group dimensions, therefore it must be normalized with reference to a "*homogeneous system*"
- Different kind of normalization yielded the same results

UNIVERSITÀ DI PISA

Transfer Entropy: case 1

 $TE(row \rightarrow column)$

	3 4 5	8 9 10	4 5	9 10
3 4 5	0.00	0.22	0.12	0.40
8 9 10	0.00	0.00	0.03	0.69
4 5	0.00	0.22	0.00	0.38
9 10	0.00	0.00	0.00	0.00

- TE depends on group dimensions too
- More reliable figures may be found with a statistical significance test

Transfer entropy: significance test

Università di Pisa

Several homogeneous systems are created and the TEs between the groups of interests are computed on them

Università di Pisa

Cluster Index: case 2

Position	Group
1	9 10
2	4 5
3	8 9 10
4	3 4 5
5	3 9 10

- The largest groups are identified
- Smaller ones (4 | 5 and 9 | 10) seem to be more tightly bound

UNIVERSITÀ DI PISA

Transfer Entropy: case 2

 $TE(row \rightarrow column)$

Counts

Conclusions

- Cluster Index and Transfer Entropy form a powerful combination that allows to investigate the hierarchy and the dynamics of a complex system
- They are not model-dependent, thus they can be applied to a wide range of fields
- Drawbacks:
 - Not quantitative enough (too dependent on cluster size)
 - Very high computational complexity

Pietro Carra pietro.carra@df.unipi.it

Case studies

- Now let's see if TE works in real life too!
- I will present two studies in two different fields
 - **Finance**: study of information flow between stock indices
 - Neuroscience: Transfer Entropy as a measure of connectivity in the brain

Case study: Finance

Università di Pisa

20

- The information flow between the biggest stock indices has been analyzed
- Indices were grouped in regions: Europe, Asia and America
- Daily return was used as the variable associated to the indices
- Return values were discretized in three levels

$$TE(Y \to X) = -\sum P(x_{n+1}, x_n, x_{n-1}, \dots, x_{n-k+1}, y_n) \log_2 \left(\frac{P(x_{n+1}|x_n, x_{n-1}, \dots, x_{n-k+1})}{P(x_{n+1}|x_n, x_{n-1}, \dots, x_{n-k+1}, y_n)} \right)$$

Kwon, Okyu, and J-S. Yang. "Information flow between stock indices." EPL (Europhysics Letters) 82.6 (2008): 68003.

UNIVERSITÀ DI PISA

Case study: Neuroscience

- The study analyzes time series from simulations and EEG and MEG data on simple motor tasks
- Neural data present various difficulties:
 - The same signal can be picked up by different sensors at different times
 - Data are continuous and single signals are spread over time
 - The time delay with which information is transferred can vary significantly (1-100 ms)
- Even in this complex environment, TE can detect connectivity between brain regions, while other methods fail

Vicente, Raul, et al. "Transfer entropy—a model-free measure of effective connectivity for the neurosciences." *Journal of computational neuroscience* 30.1 (2011): 45-67.