Pisa, September 29, 2015

Proton and electron acceleration via micro-structured targets

Giada Cantono

CEA/DSM/IRAMIS/LIDyL/PHI France • CNR/INO Italy Università di Pisa • Université Paris-Sud

Laser driven ion acceleration from solid targets

>> for TNSA, see Macchi et al., Rev. Mod. Phys. 85, 751-793 (2013)

Ideas/ strategies?

- employing ultra-high power lasers
- varying target thickness & density
- micro-structured targets

Ideas/ strategies? Hot electrons employing ultra-high power lasers varying target thickness & density micro-structured targets ٠ E 1.3 a) 1.25 6.8 4.5 1.8 ج ج آ 1.2 1.15 1.6 ا_{6.4} 1.4 1.1 3.5 6.2 Solid target 1.2 1.05 E 6 5.2 5.4 5.6 x/λ 3.5 5 **4.5** x/λ 4.8 5 5.5 coarse surfaces allow more electrons to Laser pulse be injected in the target

Passoni et al., Plasma Phys. Control. Fusions, **56**, 5001 (2014) Floquet et al., Journal of Applied Phys., **114**, 3305 (2013)

Ideas/ strategies?

- employing ultra-high power lasers
- varying target thickness & density
- micro-structured targets

the excitation of normal modes of the target plasma results in increased absorption

Ceccotti et al., Phys. Rev. Lett., 111, 5001 (2013) Passoni et al., Plasma Phys. Control. Fusions, **56**, 5001 (2014) Floquet et al., Journal of Applied Phys., **114**, 3305 (2013)

Laser pulse

IONS

Solid target

Surface Plasmon excitation on grating targets

SP: electron oscillation resonant modes at the solid-vacuum interface

Phase matching in order to obtain the resonant coupling between laser & SP requires a periodic surface

$$\mathbf{k}_{\parallel}^{\text{laser}} = \mathbf{k}_{\mathbf{SW}}(\omega) \pm \mathbf{n}\mathbf{q}$$

$$\sin\left(\phi_{res}\right) = \sqrt{\frac{\omega_p^2 - \omega^2}{\omega_p^2 - 2\omega^2}} \pm n\frac{\lambda}{d} \quad \begin{array}{c} \text{resonance} \\ \text{condition} \end{array}$$

How SPs affect particle acceleration

transverse SP field

enhances hot electron production (both energy and number) and drives high energy protons

parallel SP field accelerates electrons

along the target surface;

transverse field component imposes an emission angle $\neq 0^{\circ}$ (from tangent);

Fedeli et al., arXiv:1508.02328 Sgattoni et al., Plasma Phys. Control. Fusion, accepted (2015) Bigongiari et al., ion: Phys. Plasmas 18, 102701 (2011) Bigongiari et al., Phys. of Plasmas 20, 2701 (2013) test electron trajectory

Looking for electron acceleration by relativistic SPs

Looking for electron acceleration by relativistic SPs

Electron spectrometer

2-30 MeV energy range covering 60° angular range (ϕ_{spec}) 12bit CMOS detector Europe

contrast 10¹² (Double Plasma Mirror)

Spatial distribution Flat vs Grating @ resonance (30° inc.)

Spatial distribution Flat vs Grating @ resonance (30° inc.)

Flat vs Grating targets

Gratings at resonance	φ (± 0.5°)	θ (± 1°)	Divergence (Full Angle)	Charge in the bunch (pC)*
G30	2.0°	-2.1°	8.5°	60
SG30	2.5°	-1.4°	10°	70
G15	4.4°	-2.0°	8.4°	20
G45	4.2°	0.0°	7.5°	120
Flat @55° inc	35°	-	>34°*	70**

★ electrons with energy > 1.5 MeV *signal over whole lanex

** signal of the brightest bunch (10° divergence FA)

Electron spectra

Experiment & Simulations

What's next?

High field plasmonic is accessible thanks to ultra-high contrast laser systems; Surface plasmons do improve laser-target coupling and result in enhanced proton and electron acceleration

- Compare experimental results with PIC simulations (PhD in joint supervision UniPi)
- **?** Further characterisation of the electron bunch:
 - Scaling Laws (laser intensity, energy or duration, focal spot size)

? Applications (UED...)

What's next?

High field plasmonic is accessible thanks to ultra-high contrast laser systems; Surface plasmons do improve laser-target coupling and result in enhanced proton and electron acceleration

Compare experimental results with PIC simulations (PhD in joint supervision – UniPi)

? Further characterisation of the electron bunch:

Scaling Laws (laser intensity, focal spot size)

First observations at **CoReLS** (Gwangju, South Korea) – July 2015

PW laser facility Grating survive to ultra-high laser intensity (I = $4x10^{20}$ W/cm²)

Additional targets for protons enhancement

First try with Carbon Nanotubes

($Ø_{ext}$ 40 nm, $Ø_{int}$ 20nm, spacing 300nm, length 15÷90 um) substrates Si3N4 1um, Si 20um

Main results:

nanotubes do increase target absorption

however, few fast electrons get to the rear surface, resulting in a weak accelerating field

protons are NOT accelerated efficiently

proton spectra & accelerating electric field from 2D PIC simulations

Future work: next try with shorter (1um), less dense (1um spacing) nanotubes - Feb. 2016

Thank you for your attention