The Fuzzball conjecture

Lorenzo Bartolini

The Information Paradox

Building Black Holes in String Theory

The Fuzzball Conjecture

Conclusions

The Black Holes' Information Paradox and String Theory Based on works by S.Mathur, O.Lunin, K.Skenderis, I.Bena, S.Giusto, J.F.Morales, M.Bianchi

Lorenzo Bartolini

Università di Pisa

21 September 2017

- The Information Paradox
- Building Black Holes in String Theory
- The Fuzzball Conjecture

The Fuzzball conjecture

Lorenzo Bartolini

The Information Paradox

Building Black Holes in String Theory

The Fuzzball Conjecture

The simplest BH anatomy

$$ds^{2} = \left(1 - \frac{R_{s}}{r}\right)c^{2}dt^{2} - \left(1 - \frac{R_{s}}{r}\right)^{-1}dr^{2} - r^{2}d\Omega_{2}^{2}$$

• Completely determined by
$$R_s \equiv \frac{2MG}{c^2}$$

• Real singularity at r = 0

More general cases completely determined by M, Q, J

 \mathbb{T}

The Fuzzball conjecture

Lorenzo Bartolini

The Information Paradox

Building Black Holes in String Theory

The Fuzzball Conjecture

Throw a box of hot gas inside the BH $\downarrow\downarrow$

It had a definite entropy, now it seems lost

Save the II Law of Thermodynamics: assign an entropy to Black Holes

$$\boxed{ \begin{array}{c} \hline \text{Bekenstein 1973} \end{array} } \\ S_{Bek} = \frac{A}{4G} \Rightarrow \frac{dS_{Bek}}{dt} + \frac{dS_{matter}}{dt} \geq 0 \end{array} } \end{array}$$

The Fuzzball conjecture

Lorenzo Bartolini

The Information Paradox

Building Black Holes in String Theory

The Fuzzball Conjecture

Entropy puzzle

Puzzle: entropy has usually a fundamental interpretation

The Fuzzball conjecture

Lorenzo Bartolini

The Information Paradox

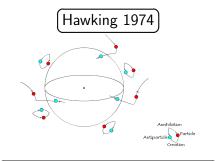
Building Black Holes in String Theory

The Fuzzball Conjecture

Conclusions

There should be
$$\mathcal{N} = \exp{S} \simeq \exp{\left[10^{76} \left(\frac{M}{M_{\odot}}\right)^2\right]}$$

microstates


However...

(BLACK HOLES HAVE NO HAIR)

No real trouble: "hair" may be produced by Quantum Gravity and hidden well beyond the horizon

Hawking Radiation

Semiclassically, Black Holes are no longer stable

The Fuzzball conjecture

Lorenzo Bartolini

The Information Paradox

Building Black Holes in String Fheory

The Fuzzball Conjecture

Conclusions

QFT+gently curved background

Pair creation near the horizon: one falls in the BH, the other escapes to infinity

Seen by a far observer as thermal emission from the BH

Black Hole Thermodynamics

The Fuzzball conjecture

Lorenzo Bartolini

The Information Paradox

Building Black Holes in String Theory

The Fuzzball Conjecture

Conclusions

Law	Thermodynamics	Black Holes
Zeroth	T constant over bodies	κ constant over
	at equilibrium	the horizon
First	dE = TdS - PdV	$dM = \frac{1}{8\pi}\kappa dA + \Omega dJ$
Second	$\delta S \leq$ 0	$\delta A \leq 0$
Third	T = 0 not achievable	$\kappa = 0$ not achievable

To complete the duality, we have

Hawking emission \leftrightarrow Blackbody radiation

The Information Paradox

Throw some matter in a BH, wait for complete evaporation through Hawking emission

- Initial matter ightarrow pure state $|\psi
 angle$
- Final state \rightarrow density matrix ρ_{rad}

The final state carries no information of what fell beyond the horizon

(Loss of UNITARY EVOLUTION)

Based on very few, reasonable assumptions

- Quantum Gravity effects are confined to lp
- Vacuum is unique

Details of Quantum Gravity are not relevant

The Fuzzball conjecture

Lorenzo Bartolini

The Information Paradox

Building Black Holes in String Theory

The Fuzzball Conjecture

The Information Paradox

Throw some matter in a BH, wait for complete evaporation through Hawking emission

- Initial matter ightarrow pure state $|\psi
 angle$
- Final state \rightarrow density matrix ρ_{rad}

The final state carries no information of what fell beyond the horizon

(Loss of UNITARY EVOLUTION)

Based on very few, reasonable assumptions

- Quantum Gravity effects are confined to ℓ_p
- Vacuum is unique

Details of Quantum Gravity are not relevant

The Fuzzball conjecture

Lorenzo Bartolini

The Information Paradox

Building Black Holes in String Fheory

The Fuzzball Conjecture

How can Quantum Gravity work around the paradox?

- \blacktriangleright Planck sized remnants \rightarrow ugly: size independent from S
- ▶ Non-local interactions (singularity ↔ horizon)
- Unitarity is effectively lost
- Structure modified up to the horizon

String theory points towards the last one

The Fuzzball conjecture

Lorenzo Bartolini

The Information Paradox

Building Black Holes in String Theory

The Fuzzball Conjecture

Contents

- The information Paradox
- Building Black Holes in String Theory
- ► The Fuzzball Conjecture

The Fuzzball conjecture

Lorenzo Bartolini

The Information Paradox

Building Black Holes in String Theory

The Fuzzball Conjecture

String Theory in few words

One principle: fundamental objects are 1-dimensional

Consequences

- SUSY to produce fermions
- Spacetime dimension= $10 \Rightarrow$ compact dimensions
- p-Branes: extended, charged objects on which strings can end
- In principle: no dimensionless free parameters
- Five theories related by web of dualities \Rightarrow M-Theory?

But the most important

It is a consistent Quantum Gravity (SUGRA as Eff.Th.)

conjecture Lorenzo Bartolini

> The Information Paradox

Building Black Holes in String Theory

The Fuzzball Conjecture

Conclusions

it MUST solve the information paradox somehow

1

Building Black Holes (Susskind)

How to solve the entropy puzzle:

Take a system of fundamental objects (strings/branes)

- Count degeneracy \rightarrow Microscopic count: easy at small g_s
- ▶ Increase g_s until a BH is formed→ Compute Area of Horizon
- Compare the degeneracy with the Bekenstein entropy: should match (or we throw away string theory)

Inconsistency: levels can shift with changes in g_s \downarrow Focus on BPS states: levels shift together (Thank y

The Fuzzball conjecture

Lorenzo Bartolini

The Information Paradox

Building Black Holes in String Theory

The Fuzzball Conjecture

Building Black Holes (Susskind)

How to solve the entropy puzzle:

Take a system of fundamental objects (strings/branes)

- Count degeneracy \rightarrow Microscopic count: easy at small g_s
- ▶ Increase g_s until a BH is formed→ Compute Area of Horizon
- Compare the degeneracy with the Bekenstein entropy: should match (or we throw away string theory)

Inconsistency: levels can shift with changes in g_s

Focus on BPS states: levels shift together (Thank you SUSY)

The Fuzzball conjecture

Lorenzo Bartolini

The Information Paradox

Building Black Holes in String Theory

The Fuzzball Conjecture

2-Charge state (winding n_y , momentum n_p in N_L)

$$S_{micro} = 2\sqrt{2}\pi\sqrt{n_y n_p}$$

$$ds_{naive}^{2} = \left(1 + \frac{Q_{1}}{r^{2}}\right)^{-1} \left[-dudv + \frac{Q_{p}}{r^{2}}dv^{2}\right] + dx_{i}dx^{i} + dz_{a}dz^{a}$$

No horizon: if we add higher derivative terms, it develops a horizon at r = 0 with

$$S_{Bek} = S_{micro}$$

We called it naive for a fundamental reason

This metric cannot exist in string theory

(datails later, crucial for next section)

The Fuzzball conjecture

Lorenzo Bartolini

The Information Paradox

Building Black Holes in String Theory

The Fuzzball Conjecture

2-Charge state (winding n_y , momentum n_p in N_L)

$$S_{micro} = 2\sqrt{2}\pi\sqrt{n_y n_p}$$

$$ds_{naive}^{2} = \left(1 + \frac{Q_{1}}{r^{2}}\right)^{-1} \left[-dudv + \frac{Q_{p}}{r^{2}}dv^{2}\right] + dx_{i}dx^{i} + dz_{a}dz^{a}$$

No horizon: if we add higher derivative terms, it develops a horizon at r = 0 with

$$S_{Bek} = S_{micro}$$

We called it naive for a fundamental reason

This metric cannot exist in string theory

(datails later, crucial for next section)

The Fuzzball conjecture

Lorenzo Bartolini

The Information Paradox

Building Black Holes in String Theory

The Fuzzball Conjecture

3-Charge state (add
$$n_5$$
 5-Branes)

 $S_{micro} = 2\pi \sqrt{n_y n_p n_5}$

Construct the corresponding metric, compute the horizon area

 $S_{Bek} = S_{micro}$

No subtleties, remarkable matching and moreover...

This solution is an extremal BH \rightarrow no Hawking radiation Perturb this configuration to make it not extremal (add some N_R)

Left and Right moving excitations can collide and escape as massless quanta leaving the Brane configuration

Rate and spin dependence agree with Hawking emission

The Fuzzball conjecture

Lorenzo Bartolini

The Information Paradox

Building Black Holes in String Theory

The Fuzzball Conjecture

3-Charge state (add
$$n_5$$
 5-Branes)

 $S_{micro} = 2\pi \sqrt{n_y n_p n_5}$

Construct the corresponding metric, compute the horizon area

$$S_{Bek} = S_{micro}$$

No subtleties, remarkable matching and moreover...

This solution is an extremal BH \rightarrow no Hawking radiation Perturb this configuration to make it not extremal (add some N_R)

Left and Right moving excitations can collide and escape as massless quanta leaving the Brane configuration

Rate and spin dependence agree with Hawking emission

The Fuzzball conjecture

Lorenzo Bartolini

The Information Paradox

Building Black Holes in String Theory

The Fuzzball Conjecture

- The information Paradox
- Building Black Holes in String Theory
- The Fuzzball Conjecture

The Fuzzball conjecture

Lorenzo Bartolini

he Information

Building Black Holes in String Theory

The Fuzzball Conjecture

Real geometries

$$ds_{naive}^{2} = \left(1 + \frac{Q_{1}}{r^{2}}\right)^{-1} \left[-dudv + \frac{Q_{p}}{r^{2}}dv^{2}\right] + dx_{i}dx^{i} + dz_{a}dz^{a}$$

$$s_{naive}^{2} = \left(1 + \frac{Q_{1}}{r^{2}}\right)^{-1} \left[-dudv + \frac{Q_{p}}{r^{2}}dv^{2}\right] + dx_{i}dx^{i} + dz_{a}dz^{i}$$

Lorenzo Bartolini

Cannot be produced by any string configuration

Real geometries

$$ds_{naive}^{2} = \left(1 + \frac{Q_{1}}{r^{2}}\right)^{-1} \left[-dudv + \frac{Q_{p}}{r^{2}}dv^{2}\right] + dx_{i}dx^{i} + dz_{a}dz^{a}$$

Cannot be produced by any string configuration (WHY?)

 ds_{naive}^2 is spherically symmetric \Rightarrow generated by a pointlike source in transverse space

But the momentum MUST be carried by transverse waves on the string

 \Downarrow

Cannot be pointlike in transverse space Should be considered just a valid SUGRA solution far from r = 0 The Fuzzball conjecture

Lorenzo Bartolini

The Information Paradox

Building Black Holes in String Theory

The Fuzzball Conjecture

Vibration profile described by $\vec{F}(v \equiv t - y)$ with $0 \le y \le 2\pi n_y R$

- Find the corresponding metric
- Make approximations (neighbouring "strands" give the same contribution)
- ► Use dualities of string theory to move to D1 D5 system

The Fuzzball conjecture

Lorenzo Bartolini

The Information Paradox

Building Black Holes in String Theory

The Fuzzball Conjecture

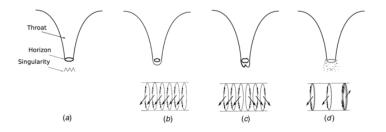
Real geometries

Resulting solution

$$ds^{2} = \sqrt{\frac{H}{1+K}} \left[-(dt - A_{i} dx^{i})^{2} + (dy + B_{i} dx^{i})^{2} \right] + \sqrt{\frac{1+K}{H}} dx_{i} dx^{i} + \sqrt{H(1+K)} dz_{a} dz^{a}$$

$$\begin{aligned} H^{-1} &= 1 + \frac{\mu Q_1}{L} \int_0^{\mu L} \frac{dv}{|\vec{x} - \mu \vec{F}(v)|^2} \\ \mathcal{K} &= \frac{\mu Q_1}{L} \int_0^{\mu L} \frac{dv (\mu^2 \dot{F}_i(v))^2}{|\vec{x} - \mu \vec{F}(v)|^2} \\ \mathcal{A}_i &= \frac{\mu Q_1}{L} \int_0^{\mu L} \frac{dv \mu \dot{F}_i}{|\vec{x} - \mu \vec{F}(v)|^2} \quad ; \quad dB = - \star_4 dA \end{aligned}$$

The Fuzzball conjecture


Lorenzo Bartolini

The Information Paradox

Building Black Holes in String Theory

The Fuzzball Conjecture

How do they look?

The geometry can be divided in three main regions

- $r \to \infty \Rightarrow$ FLAT SPACE
- ▶ Intermediate "throat" $AdS_3 \times S_3 \times T_4 \Rightarrow \approx ds_{naive}^2$
- $r \rightarrow 0 \Rightarrow$ ends in a smooth "cap"

The Fuzzball conjecture

Lorenzo Bartolini


The Information Paradox

Building Black Holes in String Theory

The Fuzzball Conjecture

How do they look?

• Different $\vec{F}(v) \Rightarrow$ Different caps

- From afar, they look like the classical "naive" BH
- Horizonless \Rightarrow Crucial: microstates have no entropy

The classical BH is a coarse-grained description

The Fuzzball conjecture

Lorenzo Bartolini

The Information Paradox

Building Black Holes in String Theory

The Fuzzball Conjecture

The size

Last issue

Information of the microstates must reach the horizon scale, or we have not solved the paradox

$$\Delta x = |\dot{\vec{F}}| \Delta y \sim \sqrt{\alpha'} \equiv \ell_s$$

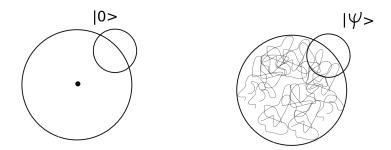
For
$$x \gg \sqrt{lpha'} \Rightarrow ds^2 o ds^2_{naive}$$

Compute area at $|\vec{x}| = \sqrt{\alpha'}$ in transverse space

$$rac{A}{4G_{10}}\sim \sqrt{n_y n_p}=S_{micro}$$

Area reproduces the Bekenstein Entropy!

The Fuzzball conjecture


Lorenzo Bartolini

The Information Paradox

Building Black Holes in String Theory

The Fuzzball Conjecture

The size

The Fuzzball conjecture

Lorenzo Bartolini

The Information Paradox

Building Black Holes in String Theory

The Fuzzball Conjecture

Conclusions

The state near the horizon is not the vacuum, instead we have

$$\langle 0|\psi
angle pprox 0$$

The "cap" region has a size which satisfies a Bekenstein relation

Does the boundary of this region behave like a horizon?

Simple test: consider a quantum falling in the cap region

The time it takes to cross the generic cap is found to be proportional to $\left(\frac{M}{m_{pl}}\right)^2$

A classical observer for which $\hbar \sim$ 0 finds an infinite crossing time

Everything that falls in the cap, can never escape

The Fuzzball conjecture

Lorenzo Bartolini

The Information Paradox

Building Black Holes in String Theory

The Fuzzball Conjecture

String theory passes a nontrivial test as a consistent Quantum Gravity

- BHs are coarse-grained descriptions of Fuzzballs
- Entropy comes from coarse-graining of N = e^S
 Fuzzball states
- Fuzzball states are horizonless (no information loss)
- ► Effects from string theory extend to horizon scale ⇒ the "would-be horizon" carries hair
- Hawking radiation is no different from that emitted by a burning coal

The Fuzzball conjecture

Lorenzo Bartolini

The Information Paradox

Building Black Holes in String Theory

The Fuzzball Conjecture

The Fuzzball conjecture

Lorenzo Bartolini

The Information Paradox

Building Black Holes in String Theory

The Fuzzbal Conjecture

Conclusions

Thanks for your attention