Heat propagation in superfluid Helium-4

Marco Barsanti, PhD student University of Pisa

marco.barsanti@phd.unipi.it

Outline

- Introduction to superfluidity
- Heat propagation:
 - Two-fluid model
 - Entropy waves
- Conclusions

Introduction to superfluidity

Fluid Superfluid

- Very low viscosity
- Quantum vortices

• High thermal conductivity

No Viscosity at T=0

Heat propagation

Stop boiling after phase transition

"Sound wave" propagation of heat
High conductivity

Theoretical approach

Two-fluid model

"Theory of the Superfluidity of Helium II" L.Landau, Phys. USSR, 5:71, 1941

Not trivial fluid dynamics

Sound waves + Entropy/Temperature waves

Two-fluid model $v < v_c$ T=0

$$egin{array}{ll} {
m Gas} \ {
m of} \ {
m free} \ {
m bosons} \ {
m moving} \ {
m at} \ {m v} \ {m P} = \int {m p} n(arepsilon(p) - {m p} {m v}) \, rac{d^3 p}{h^3} \ = {m v}
ho_n \
ho_n <
ho \end{array}$$

 $ho_n=
ho_n(T)$ "normal component" ,

- No viscosity
- No entropy

- Viscosity
- Entropy of the "excitations" gas

Fluid dynamic equations at O(v)

$$rac{\partial
ho}{\partial t} + ec
abla \cdot ec J = 0$$

Continuity equation (mass)

$$rac{\partial ec{J}}{\partial t} + ec{
abla} P = 0$$

Momentum equation

$$rac{\partial(
ho s)}{\partial t}+ec
abla(
ho sec v_n)=0$$

$$rac{\partial ec v_s}{\partial t} + ec
abla \mu = 0$$

Continuity equation (entropy)

$$ec{
abla} imes ec{v}_s = 0$$

$\begin{array}{ll} \mbox{Entropy waves}\\ \mbox{Perturbative}\\ \mbox{expansion} \end{array} & \rho = \rho_0 + \rho', \ s = s_0 + s', \ T = T_0 + T' \ etc. \end{array}$

$$rac{\partial^2
ho'}{\partial t^2}=u_1^2
abla^2
ho'\qquad u_1=\sqrt{(rac{\partial
ho}{\partial P})_s}\qquad$$
 First sound

$$rac{\partial^2 s'}{\partial t^2} = u_2^2
abla^2 s' \quad u_2 = \sqrt{\left(rac{T s^2
ho_s}{
ho_n c}
ight)_p}$$

- 2 .

Second sound

Entropy/Temperature $s' = \left(\frac{\partial s}{\partial T}\right)_p T' + \left(\frac{\partial s}{\partial P}\right)_T P'$

Sound wave

$$\mathbf{J} =
ho_s \mathbf{v}_s +
ho_n \mathbf{v}_n$$
 $\mathbf{v}_s = \mathbf{v}_n$

Entropy wave

$$egin{aligned} \mathbf{J} &=
ho_s \mathbf{v}_s +
ho_n \mathbf{v}_n \ &= 0 \ \mathbf{v}_n &= -rac{
ho_s}{
ho_n} \mathbf{v}_n \end{aligned}$$

 \boldsymbol{S}

							777	777	///						777	777	111	
n	S	S	5	S	S	n	11	n	n	n	S	S	S	S	S	n	n	n
S	n	S	s	S	11	S	n	n	n	S	n	s	S	s	n	S	n	n
n	S	n	5	n	S	n	S	n	S	n	5	n	\$	n	S	n	S	n
S	11	s	n	S	11	S	n	s	n	S	n	s	11	s	n	S	n	5
n	S	n	5	11	s	n	S	n	s	n	5	n	S	n	S	n	S	n
S	n	s	s	S	11	s	n	n	n	5	n	s	S	s	n	S	n	n
n	s	S	s	S	s	n	n	n	n	11	s	S	s	S	s	n	13	n
	m	111	111	111	m	111	111	111	111	111	111	1111	111	111	111	111	111	11

Diffusion VS Wave propagation

$$T \propto rac{1}{\sqrt{t}} e^{-x^2/4Dt}$$

 $x_{front} \sim \sigma = 2\sqrt{Dt}$

$$T \propto \cos[k(u_2t-x)]
onumber \ x_{front} = u_2t$$

Speed of second sound

Conclusions

Superfluid Helium-4

- Superfluid transition at T=2.17K
- Peculiar properties such as viscosity and high conductivity
 - Two kind of "motions" for the fluid (two-fluid model)
 - > Entropy/temperature waves