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General introduction

Dynamics of Rydberg atoms in 
dissipative regime.

Two opposing processes:
● Facilitation;
● Spontaneous decay.
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General introduction

Dynamics of Rydberg atoms in 
dissipative regime.

Two opposing processes:
● Facilitation;
● Spontaneous decay.

Absorbing phase state transition
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Rydberg atoms

Exaggerated properties with respect to ground state atoms.
 
Scaling with n*=(n-δ

qdt
):

● Binding energy: (n*)-2

● Orbital radius: (n*)2

● Lifetime: (n*)3

● Polarizability: (n*)7

● Van der Waals coefficient: (n*)11

Several applications:
● Many body physics;
● Quantum technologies.



  

The lifetime of Rydberg atoms

Two effects contribute to the lifetime of Rydberg atoms:

Spontaneous emission Blackbody induced transitions
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The experimental apparatus

Excitation: Excited with 
two photon excitation from  
ground state Rydberg state

Preparation: Atoms  
cooled and trapped with 

lasers and magnatic fields: 
magneto-optical trap



  

The experimental setup

Detection: Rydberg atoms 
are field ionized and 
accelerated towards a 
channeltron

The channeltron converts an 
incident ion to an electrical 
signal



  

The experimental setup

Detection: Rydberg atoms 
are field ionized and 
accelerated towards a 
channeltron

Center of arrival times

Gaussian width
We can record:

● Mean number of ions <N>;
● Standard deviation σ;
● Mandel paramenter                  ;
● Arrival time distribution.



  

The experimental setup

Two main parts for detection:
● Ionization of Rydberg atoms;
● Acceleration to channeltron.

First we focus on the trajectories.

Ions produced by photoionization from 5P 



  

Characterization of the detection: 
trajectories of the ions

Change the value of 
the voltages
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Characterization of the detection: 
electric fields in the cell

Electric fields in the cell:

● Complex configuration of potentials inside the apparatus;

● Quartz cell is dielectric, screening effects.

We measure the Stark shift to know the actual field on 
atoms:



  

Characterization of the detection: 
electric fields in the cell

Electric fields in the cell:

● Complex configuration of potentials inside the apparatus;

● Quartz cell is dielectric, screening effects.

We measure the Stark shift to know the actual field on 
atoms:

Loss of atom from the MOT:



  

Characterization of the detection: 
electric fields in the cell

Fit of the data on the 
quadratic Stark shift:

2



  

Characterization of the detection: 
ionization threshold

 Calibration electric 
fields + trajectories

Measurement of 
ionization threshold

Calculated value:



  

The lifetime of Rydberg atoms

We count the number of atoms in a Rydberg state as a 
funtion of time, and obtain an exponential decay.

Typical measurement:
Switch on the ionization 
fields with slowly increasing 
sweep. Rydberg atoms 
ionized in different moments. 
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The lifetime of Rydberg atoms

We count the number of atoms in a Rydberg state as a 
funtion of time, and obtain an exponential decay.

Typical measurement:
Switch on the ionization 
fields with slowly increasing 
sweep. Rydberg atoms 
ionized in different moments. 
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time
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t1 t2 t3

Difficult to apply for high n 
because ionization 
thresholds are very near.

We use the depump 
technique



  

The lifetime of Rydberg atoms:  
depump technique



  

Measurement of the lifetime

Two parts:
● Excite atoms, wait and ionize all Rydberg atoms; 
● Excite atoms, wait, depump atoms in the target state, and 

ionize the other (support states)



  

Measurement of the lifetime: lifetime 
of the target state



  

Measurement of the lifetime: lifetime 
of the target state+support states



  

Measurement of the lifetime: effects 
of interactions 

Dependence of the 
target+support lifetimes 
on the number of initial 
excitations

Anomalous initial fast 
decay, deviation from 
simple exponential decay 
for high lying Rydberg 
states.



  

Conclusions

● I have presented the results on the measurements of the lifetimes of 
Rydberg atoms;

● Good agreement with theoretical calculation between n=60 and n=80;
● Unexpected deviation from the theory for n>80;
● Dependence with number of Rydberg atoms and non-exponential 

decay suggest effects of interactions.

The results obtained during my PhD led to the following 
publications:

● De-excitation spectroscopy of strongly interacting Rydberg gases,  C. 
Simonelli, M. Archimi, L. Asteria, D. Capecchi, G. Masella, E. 
Arimondo, D. Ciampini, O. Morsch, arXiv:1707.01382, submitted to  
Phys. Rev. A (2017);

● Experimental signatures of an absorbing-state phase transition in an 
open driven many-body quantum system, R. Gutierrez, C. Simonelli, 
M. Archimi, F. Castellucci, E. Arimondo, D. Ciampini, M. Marcuzzi, I. 
Lesanovsky, O. Morsch, arXiv:1611.03288, submitted to Phys. Rev. A 
(2017).
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