QUANTUM DROPLETS IN SEMICONDUCTORS

Matteo Archimi 24 June 2016

First year seminar PhD in Physics XXXI cycle

OVERVIEW

- The many-body problem and crystalline solids;
- Quasiparticles in solids;
- The exciton and its properties;
- The "quantum droplet";
- Experimental remarks;
- Conclusion.

The many-body problem in physics

Crystalline solids

Atoms arranged in regular structures, periodic crystal potential:

Semiconductors

In semiconductors the charge carriers are described by electrons and "holes".

$$E_{e} = E_{gap} + \frac{\hbar^{2} k^{2}}{2 m^{*}} \qquad E_{h} = -\frac{\hbar^{2} k^{2}}{2 m^{*}}$$
$$m^{*} = \pm \hbar^{2} \left(\frac{d^{2} E_{k}}{dk^{2}}\right)^{-1}$$

Electrons and "holes" with their effective masses inside a crystal are "quasiparticles".

Exciton

Using laser radiation its possible to create e-h bound states

Excitons

It is possible to obtain a hydrogen-like formula from the Schrodinger equation of excitons.

$$\left[-\frac{\hbar^2 \nabla^2}{2\mu_{ex}} - \frac{e^2}{\varepsilon r}\right] F(r) = \left(E - E_{gap}\right) F(r)$$

F(x) is an envelope function for the exciton. The energy of the excitons is below the band gap energy.

Beyond the exciton

Experimental setup

Pump-probe absorption measurement setup:

PUMP pulse creates the excitations. PROBE pulse search for excitations created in the sample.

Measured absorption spectra

The trend of the lower energy resonance with the number of photons of the pump is not compatible with a biexciton.

A. E. Almand-Hunter, Nature 506, 471–475 (2014)

The model of the quantum droplet

A. E. Almand-Hunter, Nature 506, 471–475 (2014)

Calculation of energy levels from the pair correlation function

The problem of quantum-optical spectroscopy

Suitable quantum light sources can address particular correlated states through correlation injection.

Classical light source (as PUMP beam) excites a mixture of quasiparticles.

No sharp resonances

Classical spectroscopy Uncorrelated **Coherent photons** charge carriers Quantum spectroscopy Correlated Correlated photons cluster

Analysis of the quantum-optical absorption spectrum

 $\Delta \alpha_{\scriptscriptstyle MB} vs N_{\scriptscriptstyle pump} vs E_{\scriptscriptstyle bind}, \Delta t = 16 \ ps$ fixed

Conclusion: The "Quantum Droplet"

• It is formed by electrons and "holes", midway between the Thomsom atom and a real atom.

- It is spatially confined by the Fermi pressure of surrounding e-h plasma;
- Its pair correlation function looks like that of a liquid droplet;
- Has quantized energy levels.

Experimental setup

Pump-probe absorption measurement

The semiconductor sample

Measurement of quantum beats

$$\Delta \alpha_{MB} vs \Delta t vs E_{bind}$$
, $N_{pump} = 3.8 \times 10^6$ fixed

